login
A364522
G.f. satisfies A(x) = 1 + x*A(x) + x^5*A(x)^5.
7
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 258, 518, 1123, 2718, 7008, 18054, 44969, 108189, 255919, 609179, 1482210, 3689155, 9294440, 23419705, 58639835, 145948111, 362721386, 904673836, 2270287636, 5729191861, 14502873988, 36735974548, 93001413353, 235372519273
OFFSET
0,6
COMMENTS
Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 5. - Emanuele Munarini, Jul 11 2024
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * binomial(5*k,k) / (4*k+1).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n, 5*k)*binomial(5*k, k)/(4*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 27 2023
STATUS
approved