OFFSET
0,2
COMMENTS
Row 4 of A364519.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..400
FORMULA
a(n) = [x^(3*n)] ( (1 + x)^7/(1 - x) )^n.
a(n) = Sum_{j = 0..3*n} binomial(7*n, j)*binomial(4*n-j-1, 3*n-j).
a(n) = binomial(4*n-1, 3*n) * hypergeom([-7*n, -3*n], [1 - 4*n], -1) for n >= 2.
a(n) ~ c^n * 1/sqrt(6*Pi*n) where c = (14/3)^3*sqrt(7).
P-recursive: a(n) = 448*(7*n-1)*(7*n-3)*(7*n-5)*(7*n-9)*(7*n-11)*(7*n-13)/(3*n*(3*n-1)*(3*n-2)*(3*n-3)*(3*n-4)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 64.
The generating function is an algebraic function over the field of rational functions Q(x).
MAPLE
seq( simplify((7*n)!*(n/2)!/((7*n/2)!*(n)!*(3*n)!)), n = 0..15);
MATHEMATICA
PROG
(Python)
from math import factorial
from sympy import factorial2
def A364520(n): return int((factorial(7*n)*factorial2(n)<<(3*n))//(factorial2(7*n)*factorial(n)*factorial(3*n))) # Chai Wah Wu, Aug 13 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 09 2023
STATUS
approved