OFFSET
0,5
COMMENTS
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431).
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that A005810, the unsigned version of row 1, satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.
LINKS
Peter Bala, Some integer ratios of factorials
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
Wikipedia, Hypergeometric function
FORMULA
T(n,k) = Sum_{j = 0..3*k} binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j).
For n >= 3, T(n,k) = binomial(n*k-1,3*k) * hypergeom([-(n+3)*k, -3*k], [1 - n*k], -1) = ((n+3)*k)!*((n-3)*k/2)!/(((n+3)*k/2)!*((n-3)*k)!*(3*k)!) by Kummer's Theorem.
The row generating functions are algebraic functions over the field of rational functions Q(x).
EXAMPLE
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 0 -20 0 924 0 ... see A066802
1 | 1 -4 28 -220 1820 -15504 ... see A005810
2 | 1 0 -84 0 16796 0
3 | 1 20 924 48620 2704156 155117520 ... A066802
4 | 1 64 12012 2621440 608435100 146028888064 ... A364520
5 | 1 140 60060 29745716 15628090140 8480843582640 ... A211420
MAPLE
T(n, k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
PROG
(PARI) T(n, k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j));
lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Aug 07 2023
STATUS
approved