login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364516
a(n) = (2/3) * (8*n)!*(3*n)!^2/((6*n)!*(4*n)!*(2*n)!*n!^2) for n >= 1, with a(0) = 1.
2
1, 28, 3900, 685216, 133501500, 27583083528, 5919115212192, 1304298034300800, 293086491979934268, 66857471357130883000, 15434267149448839091400, 3597756971630997935635200, 845406187463509505329860000, 200002748013094535687584437696
OFFSET
0,2
COMMENTS
Row 6 of A364513.
LINKS
FORMULA
a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(6*n-1, (1 + x)/(1 - x)) for n >= 1.
a(n) = Sum_{k = 0..n} binomial(6*n - 1, n - k)^2 * binomial(4*n + k - 2, k).
a(n) = (6*n-1)!*(4*n-1/2)!*(2*n-1/2)!/((4*n-1)! * (3*n-1/2)!^2 * n!^2) for n >= 1 (fractional factorials are defined in terms of the gamma function, for example, (4*n - 1/2)! = gamma(4*n + 1/2)).
a(n) ~ 2^(8*n) * sqrt(6)/(6*Pi*n).
P-recursive: a(0) = 1; for n >= 1, a(n) = (8*n-1)*(8*n-3)*(8*n-5)*(8*n-7)*(3*n-1)*(3*n-2)/((6*n-1)*(6*n-5)*(2*n-1)^2*n^2) * a(n-1) with a(1) = 28.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
EXAMPLE
Examples of supercongruences:
a(7) - a(1) = 1304298034300800 - 28 = (2^2)*(7^4)*103553*1311481 == 0 (mod 7^4).
a(11) - a(1) = 3597756971630997935635200 - 28 = (2^2)*(11^3)*22567*7702811* 3887502719 == 0 (mod 11^3).
MAPLE
seq( (2/3) * (8*n)!*(3*n)!^2/((6*n)!*(4*n)!*(2*n)!*n!^2), n = 0..15);
MATHEMATICA
A364516[n_]:=If[n==0, 1, (2/3)(8n)!(3n)!^2/((6n)!(4n)!(2n)!n!^2)]; Array[A364516, 15, 0] (* Paolo Xausa, Oct 05 2023 *)
CROSSREFS
Cf. A364513.
Sequence in context: A201099 A290214 A036525 * A355999 A193985 A262018
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 02 2023
STATUS
approved