login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2/3) * (8*n)!*(3*n)!^2/((6*n)!*(4*n)!*(2*n)!*n!^2) for n >= 1, with a(0) = 1.
2

%I #14 Oct 05 2023 08:37:56

%S 1,28,3900,685216,133501500,27583083528,5919115212192,

%T 1304298034300800,293086491979934268,66857471357130883000,

%U 15434267149448839091400,3597756971630997935635200,845406187463509505329860000,200002748013094535687584437696

%N a(n) = (2/3) * (8*n)!*(3*n)!^2/((6*n)!*(4*n)!*(2*n)!*n!^2) for n >= 1, with a(0) = 1.

%C Row 6 of A364513.

%H Paolo Xausa, <a href="/A364516/b364516.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(6*n-1, (1 + x)/(1 - x)) for n >= 1.

%F a(n) = Sum_{k = 0..n} binomial(6*n - 1, n - k)^2 * binomial(4*n + k - 2, k).

%F a(n) = (6*n-1)!*(4*n-1/2)!*(2*n-1/2)!/((4*n-1)! * (3*n-1/2)!^2 * n!^2) for n >= 1 (fractional factorials are defined in terms of the gamma function, for example, (4*n - 1/2)! = gamma(4*n + 1/2)).

%F a(n) ~ 2^(8*n) * sqrt(6)/(6*Pi*n).

%F P-recursive: a(0) = 1; for n >= 1, a(n) = (8*n-1)*(8*n-3)*(8*n-5)*(8*n-7)*(3*n-1)*(3*n-2)/((6*n-1)*(6*n-5)*(2*n-1)^2*n^2) * a(n-1) with a(1) = 28.

%F Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

%e Examples of supercongruences:

%e a(7) - a(1) = 1304298034300800 - 28 = (2^2)*(7^4)*103553*1311481 == 0 (mod 7^4).

%e a(11) - a(1) = 3597756971630997935635200 - 28 = (2^2)*(11^3)*22567*7702811* 3887502719 == 0 (mod 11^3).

%p seq( (2/3) * (8*n)!*(3*n)!^2/((6*n)!*(4*n)!*(2*n)!*n!^2), n = 0..15);

%t A364516[n_]:=If[n==0,1,(2/3)(8n)!(3n)!^2/((6n)!(4n)!(2n)!n!^2)];Array[A364516,15,0] (* _Paolo Xausa_, Oct 05 2023 *)

%Y Cf. A364513.

%K nonn,easy

%O 0,2

%A _Peter Bala_, Aug 02 2023