login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364514
a(0) = 1 and a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(n-1, (1 + x)/(1 - x)) for n >= 1.
2
1, -2, 0, 16, 0, -252, 0, 4800, 0, -100100, 0, 2201472, 0, -50139936, 0, 1170614016, 0, -27839740500, 0, 671626956000, 0, -16388657193480, 0, 403645030064640, 0, -10018806017062752, 0, 250305475771456000, 0, -6288594802355952000, 0, 158759294846918261760
OFFSET
0,2
COMMENTS
Row 1 of A364513.
FORMULA
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n-1, n-k)^2 * binomial(n+1, k).
a(2*n) = 0 for n >= 1; a(2*n+1) = (-1)^(n+1) * 2/(2*n + 1) * (3*n + 1)!/n!^3.
a(2*n+1) ~ (-1)^(n+1) * 3^(3*n) * 3*sqrt(3)/(2*Pi*n).
P-recursive: a(0) = 1, a(1) = -2 and for n >= 2, a(n) = -(3*n - 1)*(3*n - 5)*(3*n - 6)/(n*(n - 1)^2) * a(n-2).
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+k-1, k) * binomial(n-1, k) * binomial(2*n-k, n-k). - Peter Bala, Aug 13 2023
MAPLE
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then -2 else -(3*n - 1)*(3*n - 5)*(3*n - 6)/(n*(n - 1)^2) * a(n-2) end if; end:
seq(a(n), n = 0..15);
MATHEMATICA
A364514[n_]:=A364514[n]=Which[n==0, 1, n==1, -2, True, -(3n-1)(3n-5)(3n-6)/(n(n-1)^2)A364514[n-2]]; Array[A364514, 40, 0] (* Paolo Xausa, Oct 05 2023 *)
CROSSREFS
Cf. A364513.
Sequence in context: A086261 A111978 A146558 * A025600 A009006 A155585
KEYWORD
sign,easy
AUTHOR
Peter Bala, Aug 02 2023
STATUS
approved