The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A364512 a(n) = (6*n)!^2/((5*n)! * (3*n)!^2 * n!). 3
 1, 120, 60984, 39673920, 28734361656, 22105177305120, 17676475936257600, 14521297485225136320, 12168600808728479801400, 10353699767677668805341120, 8916443122582617618026013984, 7754263877699070505609688536320, 6798445963232542402250454047721024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. The present sequence is an integral factorial ratio sequence of height 2. It is the particular case a = 2, b = 3 of the 2-parameter family of factorial ratio sequences defined by u(n) = (2*n)!/n! * ((a+b+1)*n)! * (2*a*n)! * (2*b*n)! /( ((a+b)*n)! * ((a+1)*n)! * ((b+1)*n)! * (a*n)! * (b*n)! ). These sequences are shown to be integral by the identity u(n) = Sum_{k = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(2*a*n, a*n+i) * binomial(2*b*n, b*n+i). For other cases see A006480 (a = b = 1), A364507 (a = b = 2), A364508 (a = b = 3), A364510 (a = 1, b = 2) and A364511 (a = 1, b = 3). LINKS Paolo Xausa, Table of n, a(n) for n = 0..300 Wikipedia, Dixon's identity FORMULA a(n) = Sum_{k = -n..n} (-1)^i * binomial(2*n, n+i) * binomial(4*n, 2*n+i) * binomial(6*n, 3*n+i), showing that the sequence is integral. Compare with Dixon's identity Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3. a(n) = (-1)^n * (6*n)!/((3*n)!*(2*n)!*n!) * hypergeom([-2*n, -3*n, -4*n], [n + 1, 2*n + 1], 1). P-recursive: a(n) = (576/5)*(2*n-1)^2*(6*n-1)^2*(6*n-5)^2/((5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*n^2) * a(n-1) with a(0) = 1. a(n) ~ c^n * 1/(sqrt(5)*Pi*n), where c = (2^12)*(3^6)/(5^5). a(n) = [x^n] G(x)^(24*n), where the power series G(x) = 1 + 5*x + 683*x^2 + 205020*x^3 + 81906321*x^4 + 38109640996*x^5 + 19499018805299*x^6 + 10646310099966919*x^7 + 6093917580539621690*x^8 + ... appears to have integer coefficients. exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^24, where the power series F(x) = 1 + 5*x + 1283*x^2 + 557400*x^3 + 302894393*x^4 + 186417421346*x^5 + 124214055930695*x^6 + 87454455447781703*x^7 + 64116544959085589954*x^8 + ... appears to have integer coefficients. Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r. MAPLE seq( (6*n)!^2/((5*n)! * (3*n)!^2 * n!), n = 0..15); MATHEMATICA A364512[n_]:=(6n)!^2/((5n)!(3n)!^2n!); Array[A364512, 15, 0] (* Paolo Xausa, Oct 05 2023 *) CROSSREFS Cf. A006480, A364507, A364508, A364510, A364511. Sequence in context: A301393 A074653 A065961 * A333043 A058528 A001421 Adjacent sequences: A364509 A364510 A364511 * A364513 A364514 A364515 KEYWORD nonn,easy AUTHOR Peter Bala, Jul 29 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:46 EDT 2024. Contains 373458 sequences. (Running on oeis4.)