Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 05 2023 15:20:27
%S 1,-2,0,16,0,-252,0,4800,0,-100100,0,2201472,0,-50139936,0,1170614016,
%T 0,-27839740500,0,671626956000,0,-16388657193480,0,403645030064640,0,
%U -10018806017062752,0,250305475771456000,0,-6288594802355952000,0,158759294846918261760
%N a(0) = 1 and a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(n-1, (1 + x)/(1 - x)) for n >= 1.
%C Row 1 of A364513.
%H Paolo Xausa, <a href="/A364514/b364514.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k = 0..n} (-1)^k * binomial(n-1, n-k)^2 * binomial(n+1, k).
%F a(2*n) = 0 for n >= 1; a(2*n+1) = (-1)^(n+1) * 2/(2*n + 1) * (3*n + 1)!/n!^3.
%F a(2*n+1) ~ (-1)^(n+1) * 3^(3*n) * 3*sqrt(3)/(2*Pi*n).
%F P-recursive: a(0) = 1, a(1) = -2 and for n >= 2, a(n) = -(3*n - 1)*(3*n - 5)*(3*n - 6)/(n*(n - 1)^2) * a(n-2).
%F Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
%F a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+k-1, k) * binomial(n-1, k) * binomial(2*n-k, n-k). - _Peter Bala_, Aug 13 2023
%p a := proc(n) option remember; if n = 0 then 1 elif n = 1 then -2 else -(3*n - 1)*(3*n - 5)*(3*n - 6)/(n*(n - 1)^2) * a(n-2) end if; end:
%p seq(a(n), n = 0..15);
%t A364514[n_]:=A364514[n]=Which[n==0,1,n==1,-2,True,-(3n-1)(3n-5)(3n-6)/(n(n-1)^2)A364514[n-2]];Array[A364514,40,0] (* _Paolo Xausa_, Oct 05 2023 *)
%Y Cf. A364513.
%K sign,easy
%O 0,2
%A _Peter Bala_, Aug 02 2023