The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A364517 a(n) = (5/7) * (9*n)!*(7*n/2)!^2/((9*n/2)!*(7*n)!*(5*n/2)!*n!^2) for n >= 1, with a(0) = 1. 2
 1, 40, 7650, 1847560, 494944450, 140625140040, 41500392000480, 12576565436409000, 3886690320522202050, 1219380045859742166400, 387154587452271772676400, 124120231850529022319265600, 40113527971798583517288018400, 13052024252899352166622940568000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fractional factorials are defined in terms of the gamma function; for example, (7*n/2)! = gamma(7*n/2 + 1). Row 7 of A364513. LINKS Paolo Xausa, Table of n, a(n) for n = 0..300 FORMULA a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(7*n-1, (1 + x)/(1 - x)) for n >= 1. a(n) = Sum_{k = 0..n} binomial(7*n - 1, n - k)^2 * binomial(5*n + k - 2, k). a(n) = (5/7) * binomial(9*n,2*n)*binomial(9*n/2,2*n)*binomial(2*n,n)^2 / binomial(9*n/2,n)^2 for n >= 1. a(n) = (7*n-1)! * ((9*n-1)/2)! * ((5*n-1)/2)!/( (5*n-1)! * ((7*n-1)/2)!^2 * n!^2 ) for n >= 1. a(n) ~ c^n * sqrt(35)/(14*Pi*n), where c = (3^9)/(5^3) * sqrt(5) = 352.1002080.... Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. For n > 0, a(n) = 5*(9*n)!*(7*n)!!^2/(7*(9*n)!!*(7*n)!*(5*n)!!*n!^2). - Chai Wah Wu, Aug 08 2023 MAPLE seq( (5/7) * (9*n)!*(7*n/2)!^2/((9*n/2)!*(7*n)!*(5*n/2)!*n!^2), n = 1..15); MATHEMATICA A364517[n_]:=If[n==0, 1, (5/7)(9n)!(7n/2)!^2/((9n/2)!(7n)!(5n/2)!n!^2)]; Array[A364517, 15, 0] (* Paolo Xausa, Oct 05 2023 *) PROG (Python) from math import factorial from sympy import factorial2 def A364517(n): return int(5*factorial(9*n)*factorial2(7*n)**2//factorial2(9*n)//factorial(7*n)//factorial2(5*n)//factorial(n)**2//7) if n else 1 # Chai Wah Wu, Aug 08 2023 CROSSREFS Cf. A364513. Sequence in context: A201624 A295587 A183766 * A184892 A119525 A309553 Adjacent sequences: A364514 A364515 A364516 * A364518 A364519 A364520 KEYWORD nonn,easy AUTHOR Peter Bala, Aug 03 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:40 EST 2023. Contains 367540 sequences. (Running on oeis4.)