login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A364517 a(n) = (5/7) * (9*n)!*(7*n/2)!^2/((9*n/2)!*(7*n)!*(5*n/2)!*n!^2) for n >= 1, with a(0) = 1. 2
1, 40, 7650, 1847560, 494944450, 140625140040, 41500392000480, 12576565436409000, 3886690320522202050, 1219380045859742166400, 387154587452271772676400, 124120231850529022319265600, 40113527971798583517288018400, 13052024252899352166622940568000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Fractional factorials are defined in terms of the gamma function; for example, (7*n/2)! = gamma(7*n/2 + 1).
Row 7 of A364513.
LINKS
FORMULA
a(n) = [x^n] (1 - x)^(2*n) * Legendre_P(7*n-1, (1 + x)/(1 - x)) for n >= 1.
a(n) = Sum_{k = 0..n} binomial(7*n - 1, n - k)^2 * binomial(5*n + k - 2, k).
a(n) = (5/7) * binomial(9*n,2*n)*binomial(9*n/2,2*n)*binomial(2*n,n)^2 / binomial(9*n/2,n)^2 for n >= 1.
a(n) = (7*n-1)! * ((9*n-1)/2)! * ((5*n-1)/2)!/( (5*n-1)! * ((7*n-1)/2)!^2 * n!^2 ) for n >= 1.
a(n) ~ c^n * sqrt(35)/(14*Pi*n), where c = (3^9)/(5^3) * sqrt(5) = 352.1002080....
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.
For n > 0, a(n) = 5*(9*n)!*(7*n)!!^2/(7*(9*n)!!*(7*n)!*(5*n)!!*n!^2). - Chai Wah Wu, Aug 08 2023
MAPLE
seq( (5/7) * (9*n)!*(7*n/2)!^2/((9*n/2)!*(7*n)!*(5*n/2)!*n!^2), n = 1..15);
MATHEMATICA
A364517[n_]:=If[n==0, 1, (5/7)(9n)!(7n/2)!^2/((9n/2)!(7n)!(5n/2)!n!^2)]; Array[A364517, 15, 0] (* Paolo Xausa, Oct 05 2023 *)
PROG
(Python)
from math import factorial
from sympy import factorial2
def A364517(n): return int(5*factorial(9*n)*factorial2(7*n)**2//factorial2(9*n)//factorial(7*n)//factorial2(5*n)//factorial(n)**2//7) if n else 1 # Chai Wah Wu, Aug 08 2023
CROSSREFS
Cf. A364513.
Sequence in context: A201624 A295587 A183766 * A184892 A119525 A309553
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 03 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:40 EST 2023. Contains 367540 sequences. (Running on oeis4.)