login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025600
Number of n-move knight paths on 8 X 8 board from given corner to same corner.
2
1, 0, 2, 0, 16, 0, 264, 0, 6828, 0, 218192, 0, 7555444, 0, 269039512, 0, 9671837852, 0, 348829877760, 0, 12595130308612, 0, 454944702478600, 0, 16435098767896556, 0, 593753325451468144, 0, 21450960845508768532, 0, 774978877336933136632, 0
OFFSET
0,3
LINKS
FORMULA
From Vaclav Kotesovec, Nov 26 2012: (Start)
G.f.: 1 - 2495/3704 - (-2495 + 257062*x^2 - 10940636*x^4 + 261002480*x^6 - 3944912606*x^8 + 40234628876*x^10 - 286888584304*x^12 + 1458140925208*x^14 - 5325997352347*x^16 + 13961752450926*x^18 - 25982840678332*x^20 + 33572692661080*x^22 - 28997305139008*x^24 + 15706751871616*x^26 - 4743107684352*x^28 + 598878986240*x^30)/(3704*(-1+x)*(1+x)*(-1+2*x)*(1+2*x)*(1 - 3*x - 27*x^2 + 29*x^3 + 162*x^4 - 42*x^5 - 276*x^6 - 16*x^7 + 96*x^8)*(1 + 3*x - 27*x^2 - 29*x^3 + 162*x^4 + 42*x^5 - 276*x^6 + 16*x^7 + 96*x^8)*(1 - 38*x^2 + 546*x^4 - 3712*x^6 + 12253*x^8 - 17754*x^10 + 7408*x^12))
Nonzero terms a(n+2)/a(n) tends to 36.12804064450295915...
(End)
MAPLE
b:= proc(n, i, j) option remember;
`if`(n<0 or i<0 or i>7 or j<0 or j>7, 0, `if`({n, i, j}={0},
1, add(b(n-1, i+r[1], j+r[2]), r=[[1, 2], [1, -2], [-1, 2],
[-1, -2], [2, 1], [2, -1], [-2, 1], [-2, -1]])))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 28 2012
MATHEMATICA
b[n_, i_, j_] := b[n, i, j] = If[n<0 || i<0 || i>7 || j<0 || j>7, 0, If[Union[{n, i, j}] == {0}, 1, Sum[b[n-1, i+r[[1]], j+r[[2]]], {r, {{1, 2}, {1, -2}, {-1, 2}, {-1, -2}, {2, 1}, {2, -1}, {-2, 1}, {-2, -1}}}]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A111978 A146558 A364514 * A009006 A155585 A350972
KEYWORD
nonn
STATUS
approved