login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350972
E.g.f. = tan(x).
3
0, 1, 0, 2, 0, 16, 0, 272, 0, 7936, 0, 353792, 0, 22368256, 0, 1903757312, 0, 209865342976, 0, 29088885112832, 0, 4951498053124096, 0, 1015423886506852352, 0, 246921480190207983616, 0, 70251601603943959887872, 0, 23119184187809597841473536, 0, 8713962757125169296170811392, 0
OFFSET
0,4
COMMENTS
Normally these zeros would be omitted in an OEIS entry, but in view of its importance this is included as a pointer to the main entry A000182.
EXAMPLE
tan(x) = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + (1382/155925)*x^11 + (21844/6081075)*x^13 + (929569/638512875)*x^15 + ... = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ...
MAPLE
ptan := proc(n) option remember;
if irem(n, 2) = 0 then 0 else
-add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n, 2) fi end:
A350972 := n -> abs(ptan(n)): seq(A350972(n), n=0..29); # Peter Luschny, Jun 06 2022
PROG
(Python)
from functools import cache
from math import comb as binomial
@cache
def ptan(n):
return (0 if n % 2 == 0 else
-sum(binomial(n, k)*ptan(n-k) if k > 0 else 1 for k in range(0, n+1, 2)))
def A350972(n):
t = ptan(n)
return -t if t < 0 else t
print([A350972(n) for n in range(99)]) # Peter Luschny, Jun 06 2022
CROSSREFS
See also A009006, A155585.
Sequence in context: A025600 A009006 A155585 * A236755 A354416 A057375
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 05 2022
STATUS
approved