Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 06 2022 06:10:35
%S 0,1,0,2,0,16,0,272,0,7936,0,353792,0,22368256,0,1903757312,0,
%T 209865342976,0,29088885112832,0,4951498053124096,0,
%U 1015423886506852352,0,246921480190207983616,0,70251601603943959887872,0,23119184187809597841473536,0,8713962757125169296170811392,0
%N E.g.f. = tan(x).
%C Normally these zeros would be omitted in an OEIS entry, but in view of its importance this is included as a pointer to the main entry A000182.
%e tan(x) = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + (1382/155925)*x^11 + (21844/6081075)*x^13 + (929569/638512875)*x^15 + ... = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ...
%p ptan := proc(n) option remember;
%p if irem(n, 2) = 0 then 0 else
%p -add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n,2) fi end:
%p A350972 := n -> abs(ptan(n)): seq(A350972(n), n=0..29); # _Peter Luschny_, Jun 06 2022
%o (Python)
%o from functools import cache
%o from math import comb as binomial
%o @cache
%o def ptan(n):
%o return (0 if n % 2 == 0 else
%o -sum(binomial(n,k)*ptan(n-k) if k > 0 else 1 for k in range(0,n+1,2)))
%o def A350972(n):
%o t = ptan(n)
%o return -t if t < 0 else t
%o print([A350972(n) for n in range(99)]) # _Peter Luschny_, Jun 06 2022
%Y Cf. A000182, A000364, A122045.
%Y See also A009006, A155585.
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Mar 05 2022