login
A146558
Number of order n permutations without collinear triples modulo n.
1
1, 2, 0, 16, 0, 72, 0, 256, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
L. Li, Collinear triples in permutations, arXiv:0802.0572 [math.CO], 2008.
FORMULA
For prime p>=3, a(p) = 0.
EXAMPLE
For n=4, there are a(4)=16 permutations without collinear triples: [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [2, 1, 3, 4], [2, 3, 1, 4], [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 4, 1], [3, 4, 2, 1], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2]
PROG
(PARI) { a(n) = local(p, r, g); r=0; for(j=1, n!, p=numtoperm(n, j); g=1; forvec(v=vector(3, i, [1, n]), if(matdet([1, v[1], p[v[1]]; 1, v[2], p[v[2]]; 1, v[3], p[v[3]]])%n==0, g=0; break), 2); if(g, r++)); r }
CROSSREFS
Sequence in context: A074031 A086261 A111978 * A364514 A025600 A009006
KEYWORD
nonn,hard,more
AUTHOR
Max Alekseyev, Nov 01 2008
EXTENSIONS
Edited by Max Alekseyev, Jun 21 2010
a(14)-a(29) from Bert Dobbelaere, Mar 15 2020
STATUS
approved