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Let a > b be integers. It is an old result that the ratio of factorials

(2an)!(bn)!
(2bn)!(an)!((a — b)n)!

up(a,b) == €z (1)
for n >= 0: see, for example, [1, Theorem 1.1]. The generating function

Zun(a, b)z" is known to be algebraic [2]. We wish to add two companion
n>0
results.

Let a > b be integers. Then the ratio of factorials

11\ ((2a+1)n)! ((b+ 3) n)!
i (‘” 2t 2) = @+ (e ) (@—omy <2 @

for n > 0 (throughout these notes z! is shorthand for I'(z + 1)). In addition,

1 1
the generating function Zun (a + > b+ 2> 2" is algebraic.
n>0

Examples of integer sequences of the form (2) in the OEIS include |A091527
(a=1,b=0), A091496| (¢ = 2,b = 0),|A262732 (a = 2,b = 1), |A276098
(a=3,b=1),A262733| (a = 3,b = 2) and |A276099| (a = 4,b = 2).

Integrality of the sequences.

Our proofs of the above results will use a representation for the factorial ratio
sequences involving the coefficient extraction operator.

Theorem 1. Let n be nonnegative integer and let a,b be real numbers such
that a —b € N. Then

(2an)! (bn)! ampyn] (L2 \"
(2bn)!(2an)!((l;—b)n)! - {x( b)M(ix)%) '

(3)
Proof. By means of the binomial expansion we find

() - b))

(a—b)n

S (wmen) Camty) @
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https://oeis.org/A091527
https://oeis.org/A091496
https://oeis.org/A262732
https://oeis.org/A276098
https://oeis.org/A262733
https://oeis.org/A276099

We claim that for real x there holds the polynomial identity

The Maple command

>with(sumtools):

> sumrecursion(binomial(z + 2N, N — k)*binomial(z + k — 1,2 — 1), k, s(N));

produces the first-order recurrence

Ns(n) =2(2N +x —1)s(N - 1)

satisfied by the sum on the left-hand side of (5). It is easy to verify that the

ratio of factorials on the right-hand side of (5) satisfies the same recurrence

and with the same starting value at N = 0, thus establishing (5).

In (5) set N = (a — b)n and x = 2bn to give the identity

(o 2an 2m +k—1\ (2an)! (bn)!
kz:;] ((a —bn — k) ( 2on — 1 ) —(20m)!(an)!((a — b)n)!

Comparison of (4) and (6) establishes the Theorem. O

Corollary 1. Let a > b be integers. Then

(i)
un(a,b) = (2an)! (bn)! R o (L+a)™ n
n(a,b) (2bn)!(an)!((a — b)n)! { } <(1—x)2b> ez
(i)
un | a 1 1y ((2a+D)n)! ((b+ 3)n)!

= [ate-on] (W)%“y c7
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Algebraicity of the generating functions.

In order to prove the generating functions of w,(a,b) and u,(a + 1/2,b+ 1/2)

are algebraic we will need a result about the diagonals of power series.



Let F(x,t) = Z f(i,5)x't? be a power series in x and ¢ with, say, complex
i,§>0

coefficients. The diagonal of F', denoted by diag F, is the power series in the

single variable z defined by

diag F'

> fn,n)z"

n>0

Z ([z"t"] F(x,t)) z™.

n>0

We have the following result [Stanley 6.3.3 Theorem, p. 179].

Theorem 2. Suppose the bivariate power series F(z,t) represents a rational
function. Then diag F is algebraic. O

The algebraicity of the generating functions for the factorial ratio sequences
un(a,b) and u,(a+1/2,b+4 1/2) when a > b are integers is an immediate
consequence of Corollary 1 and the following result.

Theorem 3. Let R(x) be a rational function with complez coefficients, k a
nonnegative integer and define the sequence c(n) by

c(n) = [2"] R(x)™ (9)

Then the power series Z c(n)z" is algebraic.
n>0

Proof. Suppose to begin with that £ = 1 so that

e(n) = [z"]R(z)™.
Then
. 1 nyn L n
i % ()
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n>0

Z e(n)z".

n>0

Thus in this case the generating function Z ¢(n)z" equals the diagonal of the
n>0
bivariate rational function 1/(1 — ¢R(x)) and hence is algebraic by Theorem 2.



The case k£ > 1 is handled similarly but now we work with the k-th series
multisection of 1/(1 — ¢R(z)). Recall that the k-th series multisection of a
power series g(z) = ag + a1x + asx? + - - + a,x™ + - - - is the power series

gr(7) = ap + apz® + aspx® + - + appz™ + - - - given by
=
g (x) = Egg (w'z), (10)
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where w = e™* is a primitive k-th root of unity. It will be more convenient for
us to use the series multisection in its modified form

Ik (xi) = Zankwn

n>0

and call this the k-th series multisection as well. Note that with this
understanding we have

Qnk = [xk"] g(z) = [z"](k-th series multisection of g(z)).
Thus assumption (9) is equivalent to
c¢(n) = [2"] (k-th series multisection of R(z)")
and so the generating function

Z e(n)z" = Z ([«™] (k-th series multisection of R(z)")) z"
n>0 n>0

= Eizo 1—tR (wix%)

> )
= Z [x"t"] k-th series multisection of 1 z"
= 1 —tR(z)

1
= diag (k—th series multisection of HR@))
Clearly, since R(x) is a rational function, the k-th series multisection of
1/(1 —tR(z)) will be a bivariate rational function and we can apply Theorem

2 to conclude that the generating function Z ¢(n)z" is algebraic. O
n>0



Some conjectural integer sequences of ratios of factorials.

Given two sequences of numbers a = (a1, a2, ...,ax) and b = (by,bo, ..., b1,) we
can consider the factorial ratio sequence
(a1n)! (agn)! ... (agn)!
b) = 11

un(a, b) (1)l (ban)! .- (bn)! (11)
and ask whether it is integral for all n > 0. Usually, it is assumed the a’s and
b’s are integers but (2) suggests we allow for some of the a’s and b’s to be
rational numbers. For example, consider the sequence

(30n)!n!

uln) = un((30, 1], [15,10,6]) = Gesras SiGn)

which is known to be integral for n > 0 (see A211417). It is one of the 52
sporadic integer factorial ratio sequences of height 1 classified by Bober [1,
Table 3.2, Line 31]. Calculation suggests that the three sequences

@) = (o] [P - e
() = oo (03] b)) - e

o(®) = w (o] [p2d]) - ot

are also integral for n > 0.

We give some other conjectural integer factorial ratio sequences suggested by
Bober’s Table 3.2. With

(12n)!n!

u(n) = un((12,1),[6,4,8) = Eorr e

then both

n (6n)! (5)! n (An)! (%)!
u(§) = (371)'(2715'()32)' andu<§) :(.4—

appear to be integral for n > 0.


https://oeis.org/A211417

With

(18n)!n!

u(n) :=wu,([18,1],[9,6,4]) = W

then both

2

u(2) - (<9><> (z):( (6n)! (2)!

3n)!(2n)! (47”)!

appear to be integral for n > 0.

Two other examples of conjecturally integer sequences involving ratios of
fractional factorials are
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