Some integer ratios of factorials

Peter Bala, Aug 2016
Let $a \geq b$ be integers. It is an old result that the ratio of factorials

$$
\begin{equation*}
u_{n}(a, b):=\frac{(2 a n)!(b n)!}{(2 b n)!(a n)!((a-b) n)!} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

for $n>=0$: see, for example, [1, Theorem 1.1]. The generating function $\sum_{n \geq 0} u_{n}(a, b) z^{n}$ is known to be algebraic [2]. We wish to add two companion results.

Let $a \geq b$ be integers. Then the ratio of factorials

$$
\begin{equation*}
u_{n}\left(a+\frac{1}{2}, b+\frac{1}{2}\right)=\frac{((2 a+1) n)!\left(\left(b+\frac{1}{2}\right) n\right)!}{((2 b+1) n)!\left(\left(a+\frac{1}{2}\right) n\right)!((a-b) n)!} \in \mathbb{Z} \tag{2}
\end{equation*}
$$

for $n \geq 0$ (throughout these notes $x!$ is shorthand for $\Gamma(x+1)$). In addition, the generating function $\sum_{n \geq 0} u_{n}\left(a+\frac{1}{2}, b+\frac{1}{2}\right) z^{n}$ is algebraic.

Examples of integer sequences of the form (2) in the OEIS include A091527 $(a=1, b=0), \operatorname{A091496}(a=2, b=0), \operatorname{A262732}(a=2, b=1), \mathrm{A} 276098$ $(a=3, b=1), \mathrm{A} 262733(a=3, b=2)$ and A276099 ($a=4, b=2$).

Integrality of the sequences.

Our proofs of the above results will use a representation for the factorial ratio sequences involving the coefficient extraction operator.

Theorem 1. Let n be nonnegative integer and let a, b be real numbers such that $a-b \in \mathbb{N}$. Then

$$
\begin{equation*}
\frac{(2 a n)!(b n)!}{(2 b n)!(a n)!((a-b) n)!}=\left[x^{(a-b) n}\right]\left(\frac{(1+x)^{2 a}}{(1-x)^{2 b}}\right)^{n} \tag{3}
\end{equation*}
$$

Proof. By means of the binomial expansion we find

$$
\begin{align*}
{\left[x^{(a-b) n}\right]\left(\frac{(1+x)^{2 a}}{(1-x)^{2 b}}\right)^{n} } & =\left[x^{(a-b) n}\right] \sum_{j}\binom{2 a n}{j} x^{j} \sum_{k}\binom{2 b n+k-1}{2 b n-1} x^{k} \\
& =\sum_{k=0}^{(a-b) n}\binom{2 a n}{(a-b) n-k}\binom{2 b n+k-1}{2 b n-1} \tag{4}
\end{align*}
$$

We claim that for real x there holds the polynomial identity

$$
\begin{equation*}
\sum_{k=0}^{N}\binom{x+2 N}{N-k}\binom{x+k-1}{x-1}=\frac{(x+2 N)!\left(\frac{x}{2}\right)!}{\left(\frac{x}{2}+N\right)!x!N!} \tag{5}
\end{equation*}
$$

The Maple command
$>$ with(sumtools):
$>\operatorname{sumrecursion}(\operatorname{binomial}(x+2 N, N-k) * \operatorname{binomial}(x+k-1, x-1), k, s(N))$;
produces the first-order recurrence

$$
N s(n)=2(2 N+x-1) s(N-1)
$$

satisfied by the sum on the left-hand side of (5). It is easy to verify that the ratio of factorials on the right-hand side of (5) satisfies the same recurrence and with the same starting value at $N=0$, thus establishing (5).

In (5) set $N=(a-b) n$ and $x=2 b n$ to give the identity

$$
\begin{equation*}
\sum_{k=0}^{(a-b) n}\binom{2 a n}{(a-b) n-k}\binom{2 b n+k-1}{2 b n-1}=\frac{(2 a n)!(b n)!}{(2 b n)!(a n)!((a-b) n)!} \tag{6}
\end{equation*}
$$

Comparison of (4) and (6) establishes the Theorem.

Corollary 1. Let $a \geq b$ be integers. Then
(i)

$$
\begin{equation*}
u_{n}(a, b)=\frac{(2 a n)!(b n)!}{(2 b n)!(a n)!((a-b) n)!}=\left[x^{(a-b) n}\right]\left(\frac{(1+x)^{2 a}}{(1-x)^{2 b}}\right)^{n} \in \mathbb{Z} \tag{7}
\end{equation*}
$$

(ii)

$$
\begin{align*}
u_{n}\left(a+\frac{1}{2}, b+\frac{1}{2}\right) & =\frac{((2 a+1) n)!\left(\left(b+\frac{1}{2}\right) n\right)!}{((2 b+1) n)!\left(\left(a+\frac{1}{2}\right) n\right)!((a-b) n)!} \\
& =\left[x^{(a-b) n}\right]\left(\frac{(1+x)^{2 a+1}}{(1-x)^{2 b+1}}\right)^{n} \in \mathbb{Z} \tag{8}
\end{align*}
$$

Algebraicity of the generating functions.

In order to prove the generating functions of $u_{n}(a, b)$ and $u_{n}(a+1 / 2, b+1 / 2)$ are algebraic we will need a result about the diagonals of power series.

Let $F(x, t)=\sum_{i, j \geq 0} f(i, j) x^{i} t^{j}$ be a power series in x and t with, say, complex coefficients. The diagonal of F, denoted by $\operatorname{diag} F$, is the power series in the single variable z defined by

$$
\begin{aligned}
\operatorname{diag} F & =\sum_{n \geq 0} f(n, n) z^{n} \\
& =\sum_{n \geq 0}\left(\left[x^{n} t^{n}\right] F(x, t)\right) z^{n}
\end{aligned}
$$

We have the following result [Stanley 6.3.3 Theorem, p. 179].

Theorem 2. Suppose the bivariate power series $F(x, t)$ represents a rational function. Then diag F is algebraic.

The algebraicity of the generating functions for the factorial ratio sequences $u_{n}(a, b)$ and $u_{n}(a+1 / 2, b+1 / 2)$ when $a \geq b$ are integers is an immediate consequence of Corollary 1 and the following result.

Theorem 3. Let $R(x)$ be a rational function with complex coefficients, k a nonnegative integer and define the sequence $c(n)$ by

$$
\begin{equation*}
c(n)=\left[x^{k n}\right] R(x)^{n} \tag{9}
\end{equation*}
$$

Then the power series $\sum_{n \geq 0} c(n) z^{n}$ is algebraic.
Proof. Suppose to begin with that $k=1$ so that

$$
c(n)=\left[x^{n}\right] R(x)^{n}
$$

Then

$$
\begin{aligned}
\operatorname{diag} \frac{1}{1-t R(x)} & =\sum_{n \geq 0}\left(\left[x^{n} t^{n}\right] \frac{1}{1-t R(x)}\right) z^{n} \\
= & \sum_{n \geq 0}\left(\left[x^{n} t^{n}\right]\left(1+t R(x)+\cdots+t^{n} R^{n}(x)+\cdots\right)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\left[x^{n}\right] R^{n}(x)\right) z^{n} \\
& =\sum_{n \geq 0} c(n) z^{n}
\end{aligned}
$$

Thus in this case the generating function $\sum_{n \geq 0} c(n) z^{n}$ equals the diagonal of the bivariate rational function $1 /(1-t R(x))$ and hence is algebraic by Theorem 2 .

The case $k>1$ is handled similarly but now we work with the k-th series multisection of $1 /(1-t R(x))$. Recall that the k-th series multisection of a power series $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$ is the power series $g_{k}(x)=a_{0}+a_{k} x^{k}+a_{2 k} x^{2 k}+\cdots+a_{n k} x^{n k}+\cdots$ given by

$$
\begin{equation*}
g_{k}(x)=\frac{1}{k} \sum_{i=0}^{k-1} g\left(w^{i} x\right) \tag{10}
\end{equation*}
$$

where $w=e^{\frac{2 \pi i}{k}}$ is a primitive k-th root of unity. It will be more convenient for us to use the series multisection in its modified form

$$
g_{k}\left(x^{\frac{1}{k}}\right)=\sum_{n \geq 0} a_{n k} x^{n}
$$

and call this the k-th series multisection as well. Note that with this understanding we have

$$
a_{n k}=\left[x^{k n}\right] g(x)=\left[x^{n}\right](k \text {-th series multisection of } g(x)) .
$$

Thus assumption (9) is equivalent to

$$
c(n)=\left[x^{n}\right]\left(k \text {-th series multisection of } R(x)^{n}\right)
$$

and so the generating function

$$
\begin{aligned}
\sum_{n \geq 0} c(n) z^{n} & =\sum_{n \geq 0}\left(\left[x^{n}\right]\left(k \text {-th series multisection of } R(x)^{n}\right)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\left[x^{n} t^{n}\right]\left(1+\frac{t}{k} \sum_{i=0}^{k-1} R\left(w^{i} x^{\frac{1}{k}}\right)+\cdots+\frac{t^{n}}{k} \sum_{i=0}^{k-1} R^{n}\left(w^{i} x^{\frac{1}{k}}\right)+\cdots\right)\right) z^{n} \\
& =\sum\left(\left[x^{n} t^{n}\right]\left(\frac{1}{k} \sum_{i=0}^{k-1} \frac{1}{1-t R\left(w^{i} x^{\frac{1}{k}}\right)}\right)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\left[x^{n} t^{n}\right] k \text {-th series multisection of } \frac{1}{1-t R(x)}\right) z^{n} \\
& =\operatorname{diag}\left(k \text {-th series multisection of } \frac{1}{1-t R(x)}\right)
\end{aligned}
$$

Clearly, since $R(x)$ is a rational function, the k-th series multisection of $1 /(1-t R(x))$ will be a bivariate rational function and we can apply Theorem 2 to conclude that the generating function $\sum_{n \geq 0} c(n) z^{n}$ is algebraic.

Some conjectural integer sequences of ratios of factorials.

Given two sequences of numbers $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{K}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{L}\right)$ we can consider the factorial ratio sequence

$$
\begin{equation*}
u_{n}(\mathbf{a}, \mathbf{b})=\frac{\left(a_{1} n\right)!\left(a_{2} n\right)!\ldots\left(a_{K} n\right)!}{\left(b_{1} n\right)!\left(b_{2} n\right)!\ldots\left(b_{L} n\right)!} \tag{11}
\end{equation*}
$$

and ask whether it is integral for all $n \geq 0$. Usually, it is assumed the a 's and b 's are integers but (2) suggests we allow for some of the a 's and b 's to be rational numbers. For example, consider the sequence

$$
u(n)=u_{n}([30,1],[15,10,6])=\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!}
$$

which is known to be integral for $n \geq 0$ (see A211417). It is one of the 52 sporadic integer factorial ratio sequences of height 1 classified by Bober [1, Table 3.2, Line 31]. Calculation suggests that the three sequences

$$
\begin{aligned}
u\left(\frac{n}{2}\right) & =u_{n}\left(\left[15, \frac{1}{2}\right],\left[\frac{15}{2}, 5,3\right]\right)=\frac{(15 n)!\left(\frac{n}{2}\right)!}{\left(\frac{15 n}{2}\right)!(5 n)!(3 n)!} \\
u\left(\frac{n}{3}\right) & =u_{n}\left(\left[10, \frac{1}{3}\right],\left[5, \frac{10}{3}, 2\right]\right)=\frac{(10 n)!\left(\frac{n}{3}\right)!}{(5 n)!\left(\frac{10 n}{3}\right)!(2 n)!} \\
u\left(\frac{n}{5}\right) & =u_{n}\left(\left[6, \frac{1}{5}\right],\left[3,2, \frac{6}{5}\right]\right)=\frac{(6 n)!\left(\frac{n}{5}\right)!}{(3 n)!(2 n)!\left(\frac{6 n}{5}\right)!}
\end{aligned}
$$

are also integral for $n \geq 0$.

We give some other conjectural integer factorial ratio sequences suggested by Bober's Table 3.2. With

$$
u(n) \quad:=u_{n}([12,1],[6,4,3])=\frac{(12 n)!n!}{(6 n)!(4 n)!(3 n)!}
$$

then both

$$
u\left(\frac{n}{2}\right)=\frac{(6 n)!\left(\frac{n}{2}\right)!}{(3 n)!(2 n)!\left(\frac{3 n}{2}\right)!} \text { and } u\left(\frac{n}{3}\right)=\frac{(4 n)!\left(\frac{n}{3}\right)!}{(2 n)!\left(\frac{4 n}{3}\right)!(n)!}
$$

appear to be integral for $n \geq 0$.

With

$$
u(n) \quad:=u_{n}([18,1],[9,6,4])=\frac{(18 n)!n!}{(9 n)!(6 n)!(4 n)!}
$$

then both

$$
u\left(\frac{n}{2}\right)=\frac{(9 n)!\left(\frac{n}{2}\right)!}{\left(\frac{9 n}{2}\right)!(3 n)!(2 n)!} \text { and } u\left(\frac{n}{3}\right)=\frac{(6 n)!\left(\frac{n}{3}\right)!}{(3 n)!(2 n)!\left(\frac{4 n}{3}\right)!}
$$

appear to be integral for $n \geq 0$.

Two other examples of conjecturally integer sequences involving ratios of fractional factorials are

$$
u_{n}\left(\left[6, \frac{2}{3}\right],\left[3,2, \frac{5}{3}\right]\right)=\frac{(6 n)!\left(\frac{2 n}{3}\right)!}{(3 n)!(2 n)!\left(\frac{5 n}{3}\right)!} \text { and } u_{n}\left(\left[6, \frac{1}{4}\right],\left[3,2, \frac{5}{4}\right]\right)=\frac{(6 n)!\left(\frac{n}{4}\right)!}{(3 n)!(2 n)!\left(\frac{5 n}{4}\right)!}
$$

REFERENCES

[1] J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
[2] F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT]

