login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276098
a(n) = (7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!).
21
1, 48, 6006, 860160, 130378950, 20392706048, 3254013513660, 526470648692736, 86047769258554950, 14173603389190963200, 2349023203055914140756, 391249767795614684282880, 65434374898388743460014620, 10981406991821583404677201920
OFFSET
0,2
COMMENTS
Let a > b be nonnegative integers. The ratio of factorials (2*a*n)!*(b*n)!/( (a*n)!*(2*b*n)!*((a - b)*n)! ) is known to be an integer for n >= 0 (see, for example, Bober, Theorem 1.1). We have the companion result: Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 1. Other cases include A091496 (a = 2, b = 0), A091527 (a = 1, b = 0), A262732 (a = 2, b = 1), A262733 (a = 3, b = 2) and A276099 (a = 4, b = 2).
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT], J. London Math. Soc., 79, Issue 2, (2009), 422-444.
FORMULA
a(n) = Sum_{k = 0..2*n} binomial(7*n, 2*n - k)*binomial(3*n + k - 1, k).
a(n) = Sum_{k = 0..n} binomial(10*n, 2*n - 2*k)*binomial(3*n + k - 1, k).
Recurrence: a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 5)*(7*n - 9)*(7*n - 11)*(7*n - 13)/(3*n*(n - 1)*(2*n - 1)*(2*n - 3)*(3*n - 1)*(3*n - 5)) * a(n-2).
a(n) ~ 1/sqrt(4*Pi*n) * (7^7/3^3)^(n/2).
O.g.f. A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [5/6, 3/4, 1/2, 1/4, 1/6], (7^7/3^3)*x^2) + 48*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [5/4, 4/3, 3/2, 3/4, 2/3], (7^7/3^3)*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^7/(1 - x)^3.
It follows that the o.g.f. A(x) equals the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)^3/(1 + x)^7) ) and put G(x) = 1 + x*d/dx(Log(F(x)). Then A(x^2) = (G(x) + G(-x))/2.
MAPLE
seq(simplify((7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!)), n = 0..20);
PROG
(Python)
from math import factorial
from sympy import factorial2
def A276098(n): return int((factorial(7*n)*factorial2(3*n)<<(n<<1))//factorial2(7*n)//factorial(3*n)//factorial(n<<1)) # Chai Wah Wu, Aug 10 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 22 2016
STATUS
approved