login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114721
Denominator of expansion of RiemannSiegelTheta(t) about infinity.
3
48, 5760, 80640, 430080, 1216512, 1476034560, 2555904, 8021606400, 64012419072, 131491430400, 3472883712, 25282593423360, 20132659200, 25222195445760, 2675794690179072, 2172909854392320, 6803228196864
OFFSET
1,1
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 120.
LINKS
Simon Plouffe, On the values of the functions zeta and gamma, arXiv preprint arXiv:1310.7195, 2013.
Eric Weisstein's World of Mathematics, Riemann-Siegel Function
FORMULA
a(n) is the denominator of (-1)^n*BernoulliB(2*n, 1/2)/(4*n*(2*n-1)).
EXAMPLE
RiemannSiegelTheta(t) = -Pi/8 + t*(-1/2 - log(2)/2 - log(Pi)/2 - log(t^(-1))/2) + 1/(48*t) + 7/(5760*t^3) + 31/(80640*t^5) + ...
MATHEMATICA
a[n_] := (-1)^n*BernoulliB[2*n, 1/2]/(4*n*(2*n-1)) // Denominator; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 04 2014 *)
PROG
(PARI) a(n) = denominator(subst(bernpol(2*n), x, 1/2)/(4*n*(2*n-1))); \\ Michel Marcus, Jun 20 2018
CROSSREFS
Cf. A036282, A282898 (numerators), A282899.
Sequence in context: A364174 A222846 A265666 * A057868 A269179 A276098
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Dec 27 2005
STATUS
approved