login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057868
Denominator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(4*n*(2*n)!).
1
48, 5760, 362880, 19353600, 958003200, 31384184832000, 2092278988800, 341459930972160000, 183927391818153984000, 32114306507931648000000, 620448401733239439360000, 81303558563123696133734400000, 9678995067038535254016000000, 2122022878497528469090467840000000
OFFSET
1,1
COMMENTS
Note that Weisstein gives the formula b(n) = B(n)/(2*n*n!), and a(n) is the denominator of b(2*n). Numerators seem to be A141590 (not A001067 or A046968 or A255505). - Andrey Zabolotskiy, Dec 03 2022
LINKS
D. Bar-Natan, T. T. Q. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geometry and Topology 7-1 (2003) 1-31.
Eric Weisstein's World of Mathematics, Modified Bernoulli Numbers.
EXAMPLE
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
MAPLE
seq(denom(bernoulli(2*n)/((4*n)*(2*n)!)), n = 1..14); # Peter Luschny, Dec 03 2022
MATHEMATICA
a[n_] := Denominator[ BernoulliB[2n] / (8n^2*(2n-1)!)];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jun 07 2012 *)
CROSSREFS
Numerators seem to be A141590.
Cf. A001067.
Sequence in context: A222846 A265666 A114721 * A269179 A276098 A233242
KEYWORD
nonn,frac
EXTENSIONS
Name edited by Andrey Zabolotskiy, Dec 03 2022
STATUS
approved