OFFSET
1,1
COMMENTS
Note that Weisstein gives the formula b(n) = B(n)/(2*n*n!), and a(n) is the denominator of b(2*n). Numerators seem to be A141590 (not A001067 or A046968 or A255505). - Andrey Zabolotskiy, Dec 03 2022
LINKS
D. Bar-Natan, T. T. Q. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geometry and Topology 7-1 (2003) 1-31.
Eric Weisstein's World of Mathematics, Modified Bernoulli Numbers.
EXAMPLE
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
MAPLE
seq(denom(bernoulli(2*n)/((4*n)*(2*n)!)), n = 1..14); # Peter Luschny, Dec 03 2022
MATHEMATICA
a[n_] := Denominator[ BernoulliB[2n] / (8n^2*(2n-1)!)];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jun 07 2012 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
Name edited by Andrey Zabolotskiy, Dec 03 2022
STATUS
approved