login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057870
Number of singular points on n-th order Chmutov surface.
1
0, 1, 3, 14, 28, 57, 93, 154, 216, 321, 425, 576, 732, 949, 1155, 1450, 1728, 2097, 2457, 2926, 3360, 3941, 4477, 5160, 5808, 6625, 7371, 8334, 9212, 10305, 11325, 12586, 13728, 15169, 16473, 18072, 19548, 21349, 22971, 24986, 26800, 29001
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Chmutov Surface. [Gives a formula]
FORMULA
Appears to satisfy a 13-term linear recurrence. - Ralf Stephan, Mar 07 2004
Conjectures from Colin Barker, Jan 02 2020: (Start)
G.f.: x^2*(1 + 3*x + 12*x^2 + 21*x^3 + 27*x^4 + 28*x^5 + 31*x^6 + 25*x^7 + 18*x^8 + 11*x^9 + 3*x^10) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^2).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-6) + a(n-7) - 2*a(n-8) - a(n-9) + a(n-10) + 2*a(n-11) - a(n-13) for n>13.
(End)
CROSSREFS
Sequence in context: A032041 A031002 A085762 * A256053 A354041 A031049
KEYWORD
nonn
STATUS
approved