login
A057873
a(1) = 1; a(n+1) = sum of terms in continued fraction for sum{k=1 to n}[a(n+1-k)/a(k)].
0
1, 1, 2, 5, 13, 29, 149, 217, 449, 855, 1578, 2834, 5445, 9425, 17054, 30095, 53610, 94905, 170505, 300335, 532606, 942870, 1669907, 2957734, 5236935, 9271871, 16416945, 29066281, 51463071, 91587523, 161792680, 286563514, 507342270
OFFSET
1,3
EXAMPLE
Sum{k=1 to 4}[a(5-k)/a(k)] = 5/1 +2/1 +1/2 +1/5 = 77/10 =7 +1/(1 +1/(2 +1/3)). So a(5) = 7 +1 +2 +3 = 13.
CROSSREFS
Sequence in context: A299145 A122025 A236414 * A116699 A290198 A282153
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Nov 19 2000
STATUS
approved