login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057866
Sum_{k>=1} 1/(tanh(k*Pi) * k^(4n-1)) = Pi^(4n-1)*A057866(n)/A057867(n).
4
7, 19, 1453, 13687, 7708537, 4472029801, 149780635937, 11231299844779783, 3688053840923281541, 2659842854283579394387, 1228751826452728351300837, 67537532722660373286810600661
OFFSET
1,1
COMMENTS
Numerator of coefficient of Pi^n in Ramanujan-like series for zeta(4n-1).
REFERENCES
E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939, p. 135. See Example 15.
LINKS
J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
EXAMPLE
Sum_{k>=1} 1/(tanh(k*Pi)k^3) = Pi^3*7/180,
Sum_{k>=1} 1/(tanh(k*Pi)k^7) = Pi^7*19/56700.
MATHEMATICA
Numerator[Table[2^(k-1)/(k+1)! Sum[(-1)^(n-1)Binomial[k+1, 2n]BernoulliB[k+1-2n]BernoulliB[2n], {n, 0, (k+1)/2}], {k, 3, 50, 4}]]
CROSSREFS
Cf. A057867.
Sequence in context: A330875 A330852 A267237 * A329001 A334982 A339698
KEYWORD
nonn
EXTENSIONS
Definition revised by N. J. A. Sloane, Sep 20 2009, following a suggestion of Michael Somos, Feb 11 2004
STATUS
approved