login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330852
Numerator of the rational number A(n) that appears in the formula for the n-th cumulant k(n) = (-1)^n*2^n*(A(n) - (n - 1)!*zeta(n)) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, with A(0) = 1 and A(1) = 0.
9
1, 0, 7, 19, 937, 85981, 21096517, 7527245453, 19281922400989, 7183745930973701, 3616944955616896387, 273304346447259998403709, 76372354431694636659849988531, 25401366514997931592208126670898607, 110490677504100075544188675746430710672527, 37160853195949529205295416197788818165029489819
OFFSET
0,3
COMMENTS
Hennequin conjectured his cumulant formula in his 1989 paper and proved it in his 1991 thesis.
First he calculates the numbers (B(n): n >= 0), with B(0) = 1 and B(0) = 0, given for p >= 0 by the recurrence
Sum_{r=0..p} Stirling1(p+2, r+1)*B(p-r)/(p-r)! + Sum_{r=0..p} F(r)*F(p-r) = 0, where F(r) = Sum_{i=0..r} Stirling1(r+1,i+1)*G(r-i) and G(k) = Sum_{a=0..k} (-1)^a*B(k-a)/(a!*(k-a)!*2^a).
Then A(n) = L_n(B(1),...,B(n)), where L_n(x_1,...,x_n) are the logarithmic polynomials of Bell.
Hoffman and Kuba (2019, 2020) gave an alternative proof of Hennequin's cumulant formula and gave an alternative calculation for the constants (-2)^n*A(n), which they denote by a_n. See also Finch (2020).
The Maple program below is based on Tan and Hadjicostas (1993), where the numbers (A(n): n >= 0) are also tabulated.
The rest of the references give the theory of the limiting distribution of the number of comparisons in quicksort (and for that reason we omit any discussion of that topic).
REFERENCES
Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 0..30
S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2.]
P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333.
M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) for s >= 2.]
Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100.
Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see p. 10.
Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1), 1995, 87-94.
EXAMPLE
The first few fractions A(n) are
1, 0, 7/4, 19/8, 937/144, 85981/3456, 21096517/172800, 7527245453/10368000, 19281922400989/3810240000, 7183745930973701/177811200000, ...
The first few fractions (-2)^n*A(n) (= a_n in Hoffman and Kuba and in Finch) are
1, 0, 7, -19, 937/9, -85981/108, 21096517/2700, -7527245453/81000, 19281922400989/14883750, -7183745930973701/347287500, ...
MAPLE
# Produces the sequence (B(n): n >= 0)
B := proc(m) option remember: local v, g, f, b:
if m = 0 then v := 1: end if: if m = 1 then v := 0: end if:
if 2 <= m then
g := proc(k) add((-1)^a*B(k - a)/(a!*(k - a)!*2^a), a = 0 .. k): end proc:
f := proc(r) add(Stirling1(r + 1, i + 1)*g(r - i), i = 0 .. r): end proc:
b := proc(p) (-1)^p*(add(Stirling1(p + 2, r + 1)*B(p - r)/(p - r)!, r = 1 .. p) + add(f(rr)*f(p - rr), rr = 1 .. p - 1) + 2*(-1)^p*p!*add((-1)^a*B(p - a)/(a!*(p - a)!*2^a), a = 1 .. p) + 2*add(Stirling1(p + 1, i + 1)*g(p - i), i = 1 .. p))/(p - 1): end proc:
v := simplify(b(m)): end if: v: end proc:
# Produces the sequence (A(n): n >= 0)
A := proc(m) option remember: local v:
if m = 0 then v := 1: end if: if m = 1 then v := 0: end if:
if 2 <= m then v := -(m - 1)!*add(A(k + 1)*B(m - 1 - k)/(k!*(m - 1 - k)!), k = 0 .. m - 2) + B(m): end if: v: end proc:
# Produces the sequence of numerators of the A(n)'s
seq(numer(A(n)), n = 0 .. 15);
MATHEMATICA
B[m_] := B[m] = Module[{v, g, f, b}, If[m == 0, v = 1]; If[m == 1, v = 0]; If[2 <= m, g[k_] := Sum[(-1)^a*B[k - a]/(a!*(k - a)!*2^a), {a, 0, k}]; f[r_] := Sum[StirlingS1[r + 1, i + 1]*g[r - i], {i, 0, r}]; b[p_] := (-1)^p*(Sum[StirlingS1[p + 2, r + 1]*B[p - r]/(p - r)!, {r, 1, p}] + Sum[f[rr]*f[p - rr], {rr, 1, p - 1}] + 2*(-1)^p*p!*Sum[(-1)^a*B[p - a]/(a!*(p - a)!*2^a), {a, 1, p}] + 2*Sum[StirlingS1[p + 1, i + 1]*g[p - i], {i, 1, p}])/(p - 1); v = Simplify[b[m]]]; v];
A[m_] := A[m] = Module[{v}, If[ m == 0, v = 1]; If[m == 1, v = 0]; If[2 <= m , v = -(m - 1)!*Sum[A[k + 1]*B[m - 1 - k]/(k!*(m - 1 - k)!), {k , 0 , m - 2}] + B[m]]; v];
Table[Numerator[A[n]], {n, 0, 15}] (* Jean-François Alcover, Aug 17 2020, translated from Maple *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Petros Hadjicostas, Apr 28 2020
STATUS
approved