login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276097 A nonlinear recurrence of order 5: a(1)=a(2)=a(3)=a(4)=a(5)=1; a(n)=(a(n-1)+a(n-2)+a(n-3)+a(n-4))^2/a(n-5). 3
1, 1, 1, 1, 1, 16, 361, 143641, 20741472361, 430214650013601071641, 11567790319010747187536221088708755344001, 370675271093071368960746074163948008803845834307486807769098691609909105887376 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

All terms are perfect squares.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..15

FORMULA

a(n) = A072879(n)^2.

a(n) = 25*a(n-1)*a(n-2)*a(n-3)*a(n-4) - 2a(n-1) - 2a(n-2) - 2a(n-3) - 2a(n-4) - a(n-5).

a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4) = ((a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4))/5)^2.

MATHEMATICA

RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == 1, a[n] == (a[n-1] + a[n-2] + a[n-3] + a[n-4])^2 / a[n-5]}, a, {n, 15}] (* Vincenzo Librandi, Aug 21 2016 *)

PROG

(Ruby)

def A(m, n)

  a = Array.new(m, 1)

  ary = [1]

  while ary.size < n

    i = a[1..-1].inject(:+)

    j = i * i

    break if j % a[0] > 0

    a = *a[1..-1], j / a[0]

    ary << a[0]

  end

  ary

end

def A276097(n)

  A(5, n)

end

CROSSREFS

Cf. A072879, A072882, A276095.

Sequence in context: A000488 A025759 A276257 * A265476 A008427 A187177

Adjacent sequences:  A276094 A276095 A276096 * A276098 A276099 A276100

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Aug 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 21:56 EDT 2020. Contains 333132 sequences. (Running on oeis4.)