login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091496
a(n) = ((5n)!/(n!(2n)!))(gamma(1+n/2)/gamma(1+5n/2)).
6
1, 16, 630, 28672, 1385670, 69206016, 3528923580, 182536110080, 9540949030470, 502682972323840, 26651569523959380, 1420217179365703680, 75998432812419471900, 4081125953526124511232, 219813190240007470094520
OFFSET
0,2
COMMENTS
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 2, b = 0. - Peter Bala, Aug 28 2016
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
FORMULA
n*(n-1)*(2*n-1)*(2*n-3)*a(n) = 20*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2).
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..2*n} (binomial(5*n,k)*binomial(3*n - k - 1,2*n - k).
a(n) = Sum_{k = 0..n} binomial(6*n, 2*n - 2*k)*binomial(n + k - 1, k).
a(n) ~ 5^(5*n/2)/(2*sqrt(Pi*n)).
O.g.f. A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [3/4, 1/2, 1/4], 3125*x^2) + 16*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [5/4, 3/2, 3/4], 3125*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^5/(1 - x). Cf. A061162 and A262732.
It follows that the o.g.f. for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 16*x + 443*x^2 + 15280*x^3 + 591998*x^4 + 24635360*x^5 + 1075884051*x^6 + ... has integer coefficients.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)/(1 + x)^5) ) and put G(x) = 1 + x*d/dx(Log(F(x)). Then A(x) satisfies A(x^2) = (G(x) + G(-x))/2. (End)
MATHEMATICA
Table[((5 n)!/(n! (2 n)!)) (Gamma[1 + n/2]/Gamma[1 + 5 n/2]), {n, 0, 14}] (* or *)
Table[Sum[Binomial[6 n, 2 n - 2 k] Binomial[n + k - 1, k], {k, 0, n}], {n, 0, 14}] (* or *)
Table[Sum[Binomial[5 n, k] Binomial[3 n - k - 1, 2 n - k], {k, 0, 2 n}], {n, 0, 14}] (* Michael De Vlieger, Aug 28 2016 *)
PROG
(PARI) a(n)=16^n*sum(i=0, 2*n, binomial(i-1+(n-1)/2, i))
(Python)
from math import factorial
from sympy import factorial2
def A091496(n): return int((factorial(5*n)*factorial2(n)<<(n<<1))//(factorial(n)*factorial(n<<1)*factorial2(5*n))) # Chai Wah Wu, Aug 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 15 2004
STATUS
approved