The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039921 Continued fraction expansion of w = 2*cos(Pi/7). 6
 1, 1, 4, 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, 2, 2, 1, 18, 1, 1, 3, 2, 1, 2, 1, 2, 1, 39, 2, 1, 1, 1, 13, 1, 2, 1, 30, 1, 1, 1, 3, 2, 5, 4, 1, 5, 1, 5, 1, 2, 1, 1, 94, 6, 2, 19, 11, 1, 60, 1, 1, 50, 2, 1, 1, 8, 53, 1, 3, 1, 6, 3, 2, 1, 5, 1, 1, 3, 4, 636, 1, 2, 1, 3, 3, 7, 9, 1, 2, 10, 3, 1, 22, 1, 119, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes. REFERENCES A. M. Rucklidge & W. J. Rucklidge (preprint) 2002. LINKS Harry J. Smith, Table of n, a(n) for n = 0..20000 S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy] Alastair Rucklidge, Home page G. Xiao, Contfrac Index entries for continued fractions for constants FORMULA w satisfies w^3 - w^2 - 2w + 1 = 0 and so is algebraic. The other two roots are 2*cos(3 Pi/7) and 2*cos(5 Pi/7); their continued fraction expansions also end in 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, ... which is a(n) for n >= 3. - Greg Dresden, Jul 01 2018 EXAMPLE w = 1.80193773580483825247220463901489010233183832426371430010712484639886... Equals 1 + 1/(1 + 1/(4 + 1/(20 + 1/(2 + ...)))). - Harry J. Smith, May 31 2009 MATHEMATICA ContinuedFraction[2*Cos[Pi/7], 100] PROG (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*cos(Pi/7)); for (n=0, 20000, write("b039921.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009 CROSSREFS Cf. A160389 (Decimal expansion). - Harry J. Smith, May 31 2009 Sequence in context: A002813 A263973 A104159 * A081852 A050017 A125514 Adjacent sequences: A039918 A039919 A039920 * A039922 A039923 A039924 KEYWORD cofr,nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 18:23 EDT 2023. Contains 363100 sequences. (Running on oeis4.)