login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039921
Continued fraction expansion of w = 2*cos(Pi/7).
6
1, 1, 4, 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, 2, 2, 1, 18, 1, 1, 3, 2, 1, 2, 1, 2, 1, 39, 2, 1, 1, 1, 13, 1, 2, 1, 30, 1, 1, 1, 3, 2, 5, 4, 1, 5, 1, 5, 1, 2, 1, 1, 94, 6, 2, 19, 11, 1, 60, 1, 1, 50, 2, 1, 1, 8, 53, 1, 3, 1, 6, 3, 2, 1, 5, 1, 1, 3, 4, 636, 1, 2, 1, 3, 3, 7, 9, 1, 2, 10, 3, 1, 22, 1, 119, 3
OFFSET
0,3
COMMENTS
Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.
REFERENCES
A. M. Rucklidge & W. J. Rucklidge (preprint) 2002.
LINKS
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Alastair Rucklidge, Home page
G. Xiao, Contfrac
FORMULA
w satisfies w^3 - w^2 - 2w + 1 = 0 and so is algebraic.
The other two roots are 2*cos(3 Pi/7) and 2*cos(5 Pi/7); their continued fraction expansions also end in 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, ... which is a(n) for n >= 3. - Greg Dresden, Jul 01 2018
EXAMPLE
w = 1.80193773580483825247220463901489010233183832426371430010712484639886...
Equals 1 + 1/(1 + 1/(4 + 1/(20 + 1/(2 + ...)))). - Harry J. Smith, May 31 2009
MATHEMATICA
ContinuedFraction[2*Cos[Pi/7], 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*cos(Pi/7)); for (n=0, 20000, write("b039921.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009
CROSSREFS
Cf. A160389 (Decimal expansion). - Harry J. Smith, May 31 2009
Sequence in context: A263973 A364519 A104159 * A081852 A050017 A125514
KEYWORD
cofr,nonn
STATUS
approved