login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039919
Related to enumeration of edge-rooted catafusenes.
7
0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323
OFFSET
1,3
COMMENTS
Binomial transform of the first differences of the Catalan numbers (see A000245). - Paul Barry, Feb 16 2006
Starting (1, 5, 21, ...) = A002212, (1, 3, 10, 36, 137, ...) convolved with A007317, (1, 2, 5, 15, 51, ...). - Gary W. Adamson, May 19 2009
From Petros Hadjicostas, Jan 15 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
In the same reference, sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
In the same reference, the sequence (M'(m): m >= 3) is defined by eq. (26), p. 535; see also Cyvin et al. (1994, Monatshefte fur Chemie), eq. 5, p. 1329. We have M'(m) = Sum_{1 <= i <= floor((m-1)/2)} N(i)*M(m-2*i) for m >= 3.
It turns out that M'(m) = a(floor((m + 1)/2)) for m >= 3, where (a(n): n >= 1) is the current sequence.
If 1 + U(x) = Sum_{n >= 0} N(n)*x^n = Sum_{n >= 0} A002212(n)*x^n, then the g.f. of the sequence (M(m): m >= 1) is V(x) = x*(1-x)^(-1)*(1 + U(x^2)). See eqs. 3 and 4, p. 1329, in Cyvin et al. (1994, Monatshefte fur Chemie).
Eq. 6 in the latter reference (pp. 1329-1330) states that the g.f. of the sequence (M'(m): m >= 3) is U(x^2)*V(x) = U(x^2)*x*(1-x)^(-1)*(1 + U(x^2)).
Since M'(m) = a(floor((m + 1)/2)) for m >= 3, the latter g.f. also equals (1 + x)*A(x^2)/x, where A(x) = Sum_{n >= 1} a(n)*x^n is the g.f. of the current sequence (given below by Emeric Deutsch).
Equating the two forms of the g.f. of the (M'(m): m >= 3), we get that A(x) = x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (with U(0) = 0).
The sequence (M'(m): m >= 3) = (a(floor((m + 1)/2)): m >= 3) is used in the calculation of A026298 (= numbers of polyhexes of the class PF2 with three catafusenes annelated to pyrene).
(End)
LINKS
B. N. Cyvin, E. Brendsdal, J. Brunvoll, and S. J. Cyvin, A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see Eq. 6 for the g.f. of the sequence (M'(n): n >= 3) = (a(floor((m + 1)/2)): m >= 3)).
S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
FORMULA
G.f.: 8*x^2*(1-x)/(1 - x + sqrt(1 - 6*x + 5*x^2))^3. - Emeric Deutsch, Oct 24 2002
a(n) = A002212(n) - Sum_{j=0..n-1} A002212(j). Example: a(5) = 137 - (1 + 1 + 3 + 10 + 36) = 86. - Emeric Deutsch, Jan 23 2004
a(n+1) = Sum_{k=0..n} C(n,k)*(C(k+1) - C(k)) for n >= 0, where C(k) = A000108(k). - Paul Barry, Feb 16 2006 [edited by Petros Hadjicostas, Jan 18 2019]
Recurrence: (n-2)*(n+1)*a(n) = 2*(n-1)*(3*n-4)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3*5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (using the notation in the two papers by Cyvin et al. published in 1994).
MATHEMATICA
Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3, {x, 0, n}], {n, 1, 23}] (* Vaclav Kotesovec, Oct 08 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013
CROSSREFS
Cf. A007317. - Gary W. Adamson, May 19 2009
Sequence in context: A368345 A265939 A012814 * A322875 A292494 A010925
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Oct 24 2002
STATUS
approved