login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322875
Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals two.
2
0, 1, 5, 21, 86, 361, 1584, 7315, 35635, 183080, 990659, 5635021, 33622161, 209973099, 1369560267, 9310957518, 65852852210, 483672626464, 3683088047043, 29033382412670, 236591717703447, 1990467019391404, 17268021545339042, 154304401318961489
OFFSET
2,3
LINKS
FORMULA
a(n) = A287252(n) - A026898(n-1).
MAPLE
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
a:= n-> (k-> A(n, k)-A(n, k-1))(2):
seq(a(n), n=2..30);
MATHEMATICA
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
a[n_] := With[{k = 2}, A[n, k] - A[n, k - 1]];
a /@ Range[2, 30] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A287215.
Sequence in context: A265939 A012814 A039919 * A292494 A010925 A019992
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 29 2018
STATUS
approved