login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364525
a(n) is the number of distinct ways to partition the set {1,2,...,n} into nonempty subsets such that the sum of the pi(x)*(pi(x) + 1)/2 values of each subset's size x equals n, where pi() is the prime counting function given by A000720.
0
0, 0, 1, 1, 2, 5, 9, 18, 36, 73, 145, 290, 580, 1159, 2319, 4637, 9273, 18544, 37083, 74157, 148330, 296658, 593311, 1186613, 2373208, 4746380, 9492687, 18985447, 37970821, 75941497, 151882704, 303764828, 607528497, 1215054675, 2430104713, 4860217541
OFFSET
1,5
MATHEMATICA
p[n_] := p[n] = PrimePi[n];
pv[n_] := pv[n] = p[n]*(p[n] + 1)/2;
v[n_, k_] := v[n, k] = Module[{c = 0, i = 1}, If[k == 1, Return[If[pv[n] == n, 1, 0]]]; While[i < n - k + 2, If[pv[i] <= n, c += v[n - i, k - 1]]; i++]; c];
a[n_] := a[n] = Module[{c = 0, k = 1}, While[k <= n, c += v[n, k]; k++]; c]; Table[a[n], {n, 1, 36}]
CROSSREFS
Cf. A000720.
Cf. A166444.
Cf. A365062 (sum of pi(x) + 1 for n>0).
Sequence in context: A321408 A289976 A068036 * A077947 A077972 A293354
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Dec 22 2023
STATUS
approved