login
A365736
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^4).
3
1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 254, 478, 903, 1838, 4148, 10012, 24417, 58019, 132919, 295699, 649742, 1437719, 3247500, 7504925, 17607055, 41465646, 97197400, 226053017, 522505492, 1205674911, 2790322418, 6495170018, 15209566913, 35761582618
OFFSET
0,7
FORMULA
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k) * binomial(n-k+1,n-5*k) / (n-k+1).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-k+1, n-5*k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 17 2023
STATUS
approved