login
A365734
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^2).
3
1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 163, 306, 599, 1170, 2229, 4140, 7596, 14002, 26228, 49979, 96212, 185491, 356255, 681247, 1300680, 2488500, 4782037, 9231306, 17875306, 34656389, 67194497, 130263382, 252631688, 490513867, 953923030, 1858136173, 3624102244
OFFSET
0,7
FORMULA
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k) * binomial(n-3*k+1,n-5*k) / (n-3*k+1).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-3*k+1, n-5*k)/(n-3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 17 2023
STATUS
approved