login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099132 Quintisection of 1/(1-x^5-x^6). 1
1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 464, 804, 1354, 2289, 4005, 7372, 14198, 28033, 55523, 108699, 208982, 394555, 734561, 1357136, 2504932, 4643816, 8671852, 16313856, 30855957, 58502733, 110882143, 209689343, 395358538, 743376838 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..35.

V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,5).

V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1,1)

FORMULA

G.f.: (1-x)^4/((1-x)^5-x^6);

a(n) = Sum_{k=0..n} binomial(k, 5(n-k));

a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5)+a(n-6);

a(n) = A017837(5n).

a(n) = Sum_{k=0..floor(n/5)} binomial(n-k, 5k). - Paul Barry, May 09 2005

MATHEMATICA

LinearRecurrence[{5, -10, 10, -5, 1, 1}, {1, 1, 1, 1, 1, 1}, 40] (* Harvey P. Dale, Aug 20 2012 *)

PROG

(PARI) Vec((1-x)^4/((1-x)^5-x^6) + O(x^40)) \\ Michel Marcus, Sep 06 2017

CROSSREFS

Cf. A005676.

Sequence in context: A153564 A153527 A153556 * A139398 A226910 A275423

Adjacent sequences:  A099129 A099130 A099131 * A099133 A099134 A099135

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 23:26 EST 2018. Contains 318087 sequences. (Running on oeis4.)