login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099132
Quintisection of 1/(1-x^5-x^6).
4
1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 464, 804, 1354, 2289, 4005, 7372, 14198, 28033, 55523, 108699, 208982, 394555, 734561, 1357136, 2504932, 4643816, 8671852, 16313856, 30855957, 58502733, 110882143, 209689343, 395358538, 743376838
OFFSET
0,7
LINKS
V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,5).
FORMULA
G.f.: (1-x)^4/((1-x)^5-x^6);
a(n) = Sum_{k=0..n} binomial(k, 5(n-k));
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5)+a(n-6);
a(n) = A017837(5n).
a(n) = Sum_{k=0..floor(n/5)} binomial(n-k, 5k). - Paul Barry, May 09 2005
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1, 1}, {1, 1, 1, 1, 1, 1}, 40] (* Harvey P. Dale, Aug 20 2012 *)
PROG
(PARI) Vec((1-x)^4/((1-x)^5-x^6) + O(x^40)) \\ Michel Marcus, Sep 06 2017
CROSSREFS
Sequence in context: A153556 A323228 A348290 * A365798 A139398 A365736
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 29 2004
STATUS
approved