login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099134
Expansion of x/(1-2x-19x^2).
2
0, 1, 2, 23, 84, 605, 2806, 17107, 87528, 500089, 2663210, 14828111, 80257212, 442248533, 2409384094, 13221490315, 72221278416, 395650872817, 2163506035538, 11844378654599, 64795371984420, 354633938406221
OFFSET
0,3
COMMENTS
Binomial transform is A099133. Binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....). The inverse binomial transform of k^(n-1)Fib(n) has g.f. x/(1-(k-2)x-(k^2+k-1)x^2).
4*a(n) = (-1)^(n+1)*b(n;4) = 3^n*b(n;4/3), where b(n;d), n=0,1,..., d \in C, denote one of the delta-Fibonacci numbers defined in comments to A014445 (see also Witula-Slota's paper). Our first identity is equivalent to the second formula given below. We note that the sequence (4/3)^n*F(n) is the binomial transform of the sequence 3^(-n)*b(n;4). - Roman Witula, Jul 24 2012
REFERENCES
R. Witula, D. Slota, \delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.
FORMULA
a(n) = 2a(n-1) + 19a(n-2).
a(n) = sum{k=0..n, (-1)^(n-k)binomial(n, k)4^(k-1)*Fib(k)}.
a(n) = sum{k=0..n, binomial(n, 2k+1)20^k}.
MATHEMATICA
Join[{a=0, b=1}, Table[c=2*b+19*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
CoefficientList[Series[x/(1-2x-19x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {2, 19}, {0, 1}, 30] (* Harvey P. Dale, Dec 25 2019 *)
CROSSREFS
Cf. A015447.
Sequence in context: A097232 A339474 A222564 * A069152 A131464 A245331
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 29 2004
STATUS
approved