login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005676
a(n) = Sum_{k=0..n} C(n-k,4*k).
(Formerly M1610)
21
1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 220, 376, 661, 1211, 2290, 4382, 8347, 15706, 29191, 53824, 99009, 182497, 337745, 627401, 1167937, 2174834, 4046070, 7517368, 13951852, 25880583, 48009456, 89090436, 165392856, 307137901
OFFSET
0,6
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,4).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
From Paul Barry, Jul 23 2004: (Start)
G.f.: (1-3x+3x^2-x^3)/(1-4x+6x^2-4x^3+x^4-x^5) = (1-x)^3/((1-x)^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 4k).
a(n) = 4a(n-1)-6a(n-2)+4a(n-3)-a(n-4)+a(n-5). (End)
MAPLE
A005676:=(z-1)**3/(-1+4*z-6*z**2+4*z**3-z**4+z**5); # Simon Plouffe in his 1992 dissertation.
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1, 1}, {1, 1, 1, 1, 1}, 40] (* or *) CoefficientList[Series[(1 - x)^3 / ((1 - x)^4 - x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 08 2017 *)
PROG
(Magma) [&+[Binomial(n-k, 4*k): k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, Sep 08 2017
CROSSREFS
Column k=4 of A306680.
Sequence in context: A145126 A348289 A365733 * A365735 A365079 A038503
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
STATUS
approved