Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1610 #52 Feb 28 2024 08:08:20
%S 1,1,1,1,1,2,6,16,36,71,128,220,376,661,1211,2290,4382,8347,15706,
%T 29191,53824,99009,182497,337745,627401,1167937,2174834,4046070,
%U 7517368,13951852,25880583,48009456,89090436,165392856,307137901
%N a(n) = Sum_{k=0..n} C(n-k,4*k).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A005676/b005676.txt">Table of n, a(n) for n = 0..1000</a>
%H V. C. Harris, C. C. Styles, <a href="http://www.fq.math.ca/Scanned/2-4/harris.pdf">A generalization of Fibonacci numbers</a>, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,4).
%H V. E. Hoggatt, Jr., <a href="/A005676/a005676.pdf">7-page typed letter to N. J. A. Sloane with suggestions for new sequences</a>, circa 1977.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1,1).
%F From _Paul Barry_, Jul 23 2004: (Start)
%F G.f.: (1-3x+3x^2-x^3)/(1-4x+6x^2-4x^3+x^4-x^5) = (1-x)^3/((1-x)^4-x^5).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 4k).
%F a(n) = 4a(n-1)-6a(n-2)+4a(n-3)-a(n-4)+a(n-5). (End)
%p A005676:=(z-1)**3/(-1+4*z-6*z**2+4*z**3-z**4+z**5); # _Simon Plouffe_ in his 1992 dissertation.
%t LinearRecurrence[{4, -6, 4, -1, 1}, {1, 1, 1, 1, 1}, 40] (* or *) CoefficientList[Series[(1 - x)^3 / ((1 - x)^4 - x^5), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 08 2017 *)
%o (Magma) [&+[Binomial(n-k, 4*k): k in [0..n]]: n in [0..40]]; // _Vincenzo Librandi_, Sep 08 2017
%Y Column k=4 of A306680.
%K nonn,easy
%O 0,6
%A _N. J. A. Sloane_.
%E More terms from _James A. Sellers_, Aug 21 2000