login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005674 a(n) = 2^(n-1) + 2^[ n/2 ] + 2^[ (n-1)/2 ] - F(n+3).
(Formerly M2837)
3
0, 0, 0, 0, 1, 3, 10, 25, 63, 144, 327, 711, 1534, 3237, 6787, 14056, 28971, 59283, 120894, 245457, 497167, 1004256, 2025199, 4077007, 8198334, 16467597, 33052491, 66293208 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(n) is the number of compositions of n where mixing of even and odd summands occurs. That is, at least one even summand is bracketed by two odd summands, or vice versa. - Gregory L. Simay, Jul 27 2016
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
From Gregory L. Simay, Jul 27 2016: (Start)
If n=2k, then a(n) = 2^(n-1) - 2*A079289(n) + 2^(n/2 - 1) + F(n).
If n=2k-1, then a(n) = 2^(n-1) - 2*A079289(n) + F(n). (End)
EXAMPLE
a(6) = a(2*3) = 2^5 - f(9) + 3*2^2 = 32 - 34 + 12 = 10. The 10 compositions are (1,4,1), (3,2,1), (1,2,3), (2,1,2,1), (1,2,1,2), (2,1,1,2), (1,2,2,1), (1,2,1,1,1), (1,1,2,1,1), (1,1,1,2,1).
MAPLE
A005674:=-z**4/(2*z-1)/(z**2+z-1)/(-1+2*z**2); # [Conjectured by Simon Plouffe in his 1992 dissertation.]
CROSSREFS
Cf. A079289, A027558 divided by 2.
Sequence in context: A067988 A297186 A262380 * A089100 A089117 A176610
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 07:48 EDT 2024. Contains 373541 sequences. (Running on oeis4.)