login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306680
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^(k+1)).
9
1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 5, 1, 1, 1, 2, 5, 6, 1, 1, 1, 1, 4, 8, 7, 1, 1, 1, 1, 2, 7, 13, 8, 1, 1, 1, 1, 1, 5, 12, 21, 9, 1, 1, 1, 1, 1, 2, 11, 21, 34, 10, 1, 1, 1, 1, 1, 1, 6, 21, 37, 55, 11, 1, 1, 1, 1, 1, 1, 2, 16, 37, 65, 89, 12
OFFSET
0,3
LINKS
FORMULA
A(n,k) = Sum_{j=0..n} binomial(n-j,k*j).
A(n,k) = A306713(k*n,k) for k > 0.
EXAMPLE
A(4,1) = A306713(4,1) = 5, A(4,2) = A306713(8,2) = 4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 1, 1, 1, 1, 1, 1, 1, ...
4, 3, 2, 1, 1, 1, 1, 1, 1, ...
5, 5, 4, 2, 1, 1, 1, 1, 1, ...
6, 8, 7, 5, 2, 1, 1, 1, 1, ...
7, 13, 12, 11, 6, 2, 1, 1, 1, ...
8, 21, 21, 21, 16, 7, 2, 1, 1, ...
9, 34, 37, 37, 36, 22, 8, 2, 1, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n - j, k*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
CROSSREFS
Columns 0-9 give A000027(n+1), A000045(n+1), A005251(n+1), A003522, A005676, A099132, A293169, A306721, A306752, A306753.
Sequence in context: A205131 A175892 A010783 * A083312 A032435 A337798
KEYWORD
nonn,tabl,look
AUTHOR
Seiichi Manyama, Mar 05 2019
STATUS
approved