login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003522
a(n) = Sum_{k=0..n} C(n-k,3k).
(Formerly M1391)
9
1, 1, 1, 1, 2, 5, 11, 21, 37, 64, 113, 205, 377, 693, 1266, 2301, 4175, 7581, 13785, 25088, 45665, 83097, 151169, 274969, 500162, 909845, 1655187, 3011157, 5477917, 9965312, 18128529, 32978725, 59993817, 109139117, 198543154
OFFSET
0,5
REFERENCES
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 113.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,3).
Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f. : (1-x)^2/(1-3x+3x^2-x^3-x^4); a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-4). - Paul Barry, Jul 07 2004
MAPLE
A003522:=-(z-1)**2/(-1+3*z-3*z**2+z**4+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
LinearRecurrence[{3, -3, 1, 1}, {1, 1, 1, 1}, 35] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff((1-x)^2/(1-3*x+3*x^2-x^3-x^4)+x*O(x^n), n)) /* Michael Somos, Sep 20 2005 */
CROSSREFS
Sequence in context: A103198 A183929 A365252 * A112805 A119970 A326509
KEYWORD
nonn,easy
STATUS
approved