login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} C(n-k,3k).
(Formerly M1391)
9

%I M1391 #44 Oct 19 2022 08:12:53

%S 1,1,1,1,2,5,11,21,37,64,113,205,377,693,1266,2301,4175,7581,13785,

%T 25088,45665,83097,151169,274969,500162,909845,1655187,3011157,

%U 5477917,9965312,18128529,32978725,59993817,109139117,198543154

%N a(n) = Sum_{k=0..n} C(n-k,3k).

%D A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 113.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A003522/b003522.txt">Table of n, a(n) for n = 0..3850</a>

%H V. C. Harris, C. C. Styles, <a href="http://www.fq.math.ca/Scanned/2-4/harris.pdf">A generalization of Fibonacci numbers</a>, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,3).

%H V. E. Hoggatt, Jr., <a href="/A005676/a005676.pdf">7-page typed letter to N. J. A. Sloane with suggestions for new sequences</a>, circa 1977.

%H Vedran Krcadinac, <a href="http://www.fq.math.ca/Papers1/44-4/quartkrcadinac04_2006.pdf">A new generalization of the golden ratio</a>, Fibonacci Quart. 44 (2006), no. 4, 335-340.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1, 1).

%F G.f. : (1-x)^2/(1-3x+3x^2-x^3-x^4); a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-4). - _Paul Barry_, Jul 07 2004

%p A003522:=-(z-1)**2/(-1+3*z-3*z**2+z**4+z**3); # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t LinearRecurrence[{3, -3, 1, 1},{1, 1, 1, 1},35] (* _Ray Chandler_, Sep 23 2015 *)

%o (PARI) a(n)=if(n<0, 0, polcoeff((1-x)^2/(1-3*x+3*x^2-x^3-x^4)+x*O(x^n), n)) /* _Michael Somos_, Sep 20 2005 */

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_