login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112805
Expansion of solution of functional equation.
3
1, 1, 1, 1, 1, 2, 5, 11, 21, 37, 66, 127, 261, 545, 1119, 2255, 4529, 9202, 18989, 39566, 82614, 172272, 359159, 750699, 1575649, 3319942, 7012833, 14834345, 31414423, 66619692, 141526459, 301202699, 642055773, 1370429491, 2928418794
OFFSET
1,6
FORMULA
G.f. A(x)=y satisfies y=x+(xy)/(1-(xy)^2).
Series reversion of g.f. A(x) is -A(-x).
D-finite with recurrence 16*(n-1)*(1240223*n -6702246)*(n+1)*a(n) +8*(2480446*n^3 -39153654*n^2 +84032501*n +6702246)*a(n-1) +4*(-31385887*n^3 +335465133*n^2 -849400280*n +599382573)*a(n-2) +2*(29566778*n^3 -194324013*n^2 +26628520*n +491525637)*a(n-3) +6*(6680714*n^3 -167765708*n^2 +1031916951*n -1815562235)*a(n-4) +2*(-155507474*n^3+2303856267*n^2 -11150676133*n +17639612322)*a(n-5) +12*(-41500633*n^3 +711522713*n^2 -3909195761*n +6849836674)*a(n-6) +2*(-122699626*n^3 +2534143032*n^2 -16977163481*n +36816733731)*a(n-7) +(n-9)*(33105709*n^2 -338697405*n +802704794)*a(n-8) +8*(n-10)*(9921784*n-30998433)*(n-8)*a(n-9) +4*(n-11)*(13262141*n-65833637)*(n-9)*a(n-10)=0. - R. J. Mathar, Jul 20 2023
a(n+1) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(n-2*k+1,n-4*k)/(n-2*k+1). - Seiichi Manyama, Aug 28 2023
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=x+O(x^2); for(k=1, n, A=x+subst(x/(1-x^2), x, x*A)); polcoeff(A, n))}
CROSSREFS
Sequence in context: A183929 A365252 A003522 * A119970 A326509 A082775
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 20 2005
STATUS
approved