login
A337798
Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674
OFFSET
0,10
FORMULA
a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.
EXAMPLE
a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
MAPLE
p:= (n, k) -> k * (k + 1) * (k * (n - 2) - n + 5) / 6:
f:= proc(n) local k, P;
P:= mul(1+x^p(n, k), k=1..n);
coeff(P, x, p(n, n));
end proc:
map(f, [$0..80]); # Robert Israel, Sep 23 2020
PROG
(PARI) default(parisizemax, 2^31);
p(n, k) = k*(k + 1)*(k*(n-2) - n + 5)/6;
a(n) = my(f=1+x*O(x^p(n, n))); for(k=1, n, f*=1+x^p(n, k)); polcoeff(f, p(n, n)); \\ Jinyuan Wang, Dec 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 22 2020
EXTENSIONS
More terms from Robert Israel, Sep 23 2020
STATUS
approved