The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337798 Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers. 4
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Eric Weisstein's World of Mathematics, Pyramidal Number FORMULA a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number. EXAMPLE a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10]. MAPLE p:= (n, k) ->  k * (k + 1) * (k * (n - 2) - n + 5) / 6: f:= proc(n) local k, P;   P:= mul(1+x^p(n, k), k=1..n);   coeff(P, x, p(n, n)); end proc: map(f, [\$0..80]); # Robert Israel, Sep 23 2020 PROG (PARI) default(parisizemax, 2^31); p(n, k) = k*(k + 1)*(k*(n-2) - n + 5)/6; a(n) = my(f=1+x*O(x^p(n, n))); for(k=1, n, f*=1+x^p(n, k)); polcoeff(f, p(n, n)); \\ Jinyuan Wang, Dec 21 2021 CROSSREFS Cf. A006484, A288126, A298857, A337763, A337797, A337799. Sequence in context: A306680 A083312 A032435 * A117502 A212630 A030360 Adjacent sequences:  A337795 A337796 A337797 * A337799 A337800 A337801 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Sep 22 2020 EXTENSIONS More terms from Robert Israel, Sep 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)