login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337798
Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674
OFFSET
0,10
FORMULA
a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.
EXAMPLE
a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
MAPLE
p:= (n, k) -> k * (k + 1) * (k * (n - 2) - n + 5) / 6:
f:= proc(n) local k, P;
P:= mul(1+x^p(n, k), k=1..n);
coeff(P, x, p(n, n));
end proc:
map(f, [$0..80]); # Robert Israel, Sep 23 2020
PROG
(PARI) default(parisizemax, 2^31);
p(n, k) = k*(k + 1)*(k*(n-2) - n + 5)/6;
a(n) = my(f=1+x*O(x^p(n, n))); for(k=1, n, f*=1+x^p(n, k)); polcoeff(f, p(n, n)); \\ Jinyuan Wang, Dec 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 22 2020
EXTENSIONS
More terms from Robert Israel, Sep 23 2020
STATUS
approved