Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 25 2021 02:41:01
%S 1,1,1,1,1,1,1,1,1,2,1,1,3,1,1,2,4,5,4,5,7,11,9,4,12,12,24,23,42,59,
%T 64,58,124,206,212,168,377,539,703,873,1122,1505,1943,2724,4100,4513,
%U 6090,7138,12079,16584,20240,27162,35874,52622,69817,88059,115628,152756,219538,240200,358733,480674
%N Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PyramidalNumber.html">Pyramidal Number</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>
%F a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.
%e a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
%p p:= (n,k) -> k * (k + 1) * (k * (n - 2) - n + 5) / 6:
%p f:= proc(n) local k, P;
%p P:= mul(1+x^p(n,k),k=1..n);
%p coeff(P,x,p(n,n));
%p end proc:
%p map(f, [$0..80]); # _Robert Israel_, Sep 23 2020
%o (PARI) default(parisizemax, 2^31);
%o p(n,k) = k*(k + 1)*(k*(n-2) - n + 5)/6;
%o a(n) = my(f=1+x*O(x^p(n,n))); for(k=1, n, f*=1+x^p(n,k)); polcoeff(f, p(n,n)); \\ _Jinyuan Wang_, Dec 21 2021
%Y Cf. A006484, A288126, A298857, A337763, A337797, A337799.
%K nonn
%O 0,10
%A _Ilya Gutkovskiy_, Sep 22 2020
%E More terms from _Robert Israel_, Sep 23 2020