The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306681 a(1) = 1, for n >= 2 let the digits of a(n-1) be d_1, ..., d_i in base 10. Starting from d_1 do the following procedure: if d_r is divisible by 2, then d_r_new = d_r / 2, otherwise d_r_new = 3*d_r. a(n) = concatenation of d_r_new for r = 1 to i. 0
 1, 3, 9, 27, 121, 313, 939, 27927, 12127121, 313121313, 939313939, 2792793927927, 121271212792712127121, 31312131312127121313121313, 939313939313121313939313939, 27927939279279393139392792793927927, 1212712127927121271212792793927927121271212792712127121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let a(1) has r digits x_1, ..., x_r. The count of the digits 1, ..., 9 in a(1) is y_1, ..., y_9;  y_i >= 0. For the digits 1, ..., 9 there exist constants c_1, ..., c_9;  c_j irrational. Let k = (c_1*y_1 + ... + c_9*y_9). Then the number of digits of a(n) is approximately equal to k * (1.290554)^n and the sum of the digits of a(n) is approximately equal to 3.719315 * k * (1.290554)^n. This sequence has a(1) = 1, thus c_1*y_1 = 0.670173 * 1 and the number of digits of a(n) is approximately equal to 0.670173 * (1.290554)^n. The sum of digits of a(n) is approximately equal to 2.492585 * (1.290554)^n. This is based on empirical observations. LINKS EXAMPLE a(1) = 1; a(2) = 3*1 = 3; a(3) = 3*3 = 9; a(4) = 3*9 = 27; a(5) = 2/2 concatenated with 3*7 = 121; a(6) = 3*1 concatenated with 2/2 concatenated with 3*1 = 313; and so on. PROG (PARI) replace_digits(n) = my(d=digits(n), e=[]); for(k=1, #d, if(d[k]%2==0, e=concat(e, d[k]/2), my(ee=digits(3*d[k])); for(r=1, #ee, e=concat(e, ee[r])))); subst(Pol(e), x, 10) terms(n) = my(x=1, i=0); while(i < n, print1(x, ", "); i++; x=replace_digits(x)) /* Print initial 17 terms as follows: */ terms(17) \\ Felix Fröhlich, Mar 05 2019 CROSSREFS Cf. A006370. Sequence in context: A121746 A323927 A146151 * A254334 A028855 A299597 Adjacent sequences:  A306678 A306679 A306680 * A306682 A306683 A306684 KEYWORD nonn,base AUTHOR Ctibor O. Zizka, Mar 05 2019 EXTENSIONS More terms from Felix Fröhlich, Mar 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 09:53 EDT 2020. Contains 334762 sequences. (Running on oeis4.)