login
A175892
Row a(0) = A000027; row a(n) for n > 0 is the sequence of natural numbers up to each k in row a(n-1).
1
1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 1, 5, 1, 1, 1, 2, 2, 6, 1, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 2, 1, 1, 3, 10, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 13, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
0,3
COMMENTS
Table is read by diagonals. Row a(1) is A002260.
Is there any column past C(2) such that every element but the first is 1?
LINKS
Franklin T. Adams-Watters, Doubly Fractal Sequences
EXAMPLE
Row 0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ... (A000027)
Row 1: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4 ... (A002260)
Row 2: 1, 1, 1, 2, 1, 1, 2, 1, 2, 3 ...
Row 3: 1, 1, 1, 1, 2, 1, 1, 1, 2, 1 ...
PROG
(Python)
out = [list(range(1, 143))]
for row in range(1, 142):
out.append([])
for column in range(142):
out[row].extend(range(1, out[row - 1][column] + 1))
if len(out[row]) > 143: break
n = 0
for diagonal in range(142):
x = diagonal
while x >= 0:
print(n, out[x][diagonal - x])
n += 1
x -= 1
CROSSREFS
Sequence in context: A285851 A055169 A205131 * A010783 A306680 A083312
KEYWORD
nonn,tabl
AUTHOR
Grant Garcia, Oct 08 2010
STATUS
approved