login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175892 Row a(0) = A000027; row a(n) for n > 0 is the sequence of natural numbers up to each k in row a(n-1). 1
1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 1, 5, 1, 1, 1, 2, 2, 6, 1, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 2, 1, 1, 3, 10, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 13, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Table is read by diagonals. Row a(1) is A002260.

Is there any column past C(2) such that every element but the first is 1?

LINKS

Grant Garcia, Table of n, a(n) for n = 0..10000

Franklin T. Adams-Watters, Doubly Fractal Sequences

EXAMPLE

Row 0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10... (A000027)

Row 1: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4... (A002260)

Row 2: 1, 1, 1, 2, 1, 1, 2, 1, 2, 3...

Row 3: 1, 1, 1, 1, 2, 1, 1, 1, 2, 1...

PROG

(Python) out = [range(1, 143)]

for row in range(1, 142):

.out.append([])

.for column in range(142):

..out[row].extend(range(1, out[row - 1][column] + 1))

..if len(out[row]) > 143: break

n = 0

for diagonal in range(142):

.x = diagonal

.while x >= 0:

..print n, out[x][diagonal - x]

..n += 1

..x -= 1

CROSSREFS

Cf. A000027, A002260.

Sequence in context: A285851 A055169 A205131 * A010783 A306680 A083312

Adjacent sequences:  A175889 A175890 A175891 * A175893 A175894 A175895

KEYWORD

nonn,tabl

AUTHOR

Grant Garcia, Oct 08 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 22:55 EDT 2020. Contains 333132 sequences. (Running on oeis4.)