The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175892 Row a(0) = A000027; row a(n) for n > 0 is the sequence of natural numbers up to each k in row a(n-1). 1
 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 1, 5, 1, 1, 1, 2, 2, 6, 1, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 2, 1, 1, 3, 10, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 11, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 13, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Table is read by diagonals. Row a(1) is A002260. Is there any column past C(2) such that every element but the first is 1? LINKS Grant Garcia, Table of n, a(n) for n = 0..10000 Franklin T. Adams-Watters, Doubly Fractal Sequences EXAMPLE Row 0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ... (A000027) Row 1: 1, 1, 2, 1, 2, 3, 1, 2, 3,  4 ... (A002260) Row 2: 1, 1, 1, 2, 1, 1, 2, 1, 2,  3 ... Row 3: 1, 1, 1, 1, 2, 1, 1, 1, 2,  1 ... PROG (Python) out = [list(range(1, 143))] for row in range(1, 142):     out.append([])     for column in range(142):         out[row].extend(range(1, out[row - 1][column] + 1))         if len(out[row]) > 143: break n = 0 for diagonal in range(142):     x = diagonal     while x >= 0:         print(n, out[x][diagonal - x])         n += 1         x -= 1 CROSSREFS Cf. A000027, A002260. Sequence in context: A285851 A055169 A205131 * A010783 A306680 A083312 Adjacent sequences:  A175889 A175890 A175891 * A175893 A175894 A175895 KEYWORD nonn,tabl AUTHOR Grant Garcia, Oct 08 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 17:19 EDT 2021. Contains 347618 sequences. (Running on oeis4.)