login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285851
Denominator of the ratio of alternate consecutive prime gaps: Denominator((prime(n + 3) - prime(n + 2))/(prime(n + 1) - prime(n))).
1
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 7, 2, 3, 1, 5, 1, 3, 1, 2, 3, 3, 1, 5, 1, 1, 1, 3, 6, 1, 1, 2, 3, 1, 5, 1, 3, 1, 1, 3, 2, 1, 5, 7, 1, 1, 2, 7, 3, 5, 1, 1, 1, 4, 3, 1, 1, 3, 1, 2, 4, 1, 1, 5, 1, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 4, 1, 3, 2, 1, 9, 1, 5, 3, 1, 1, 1, 5
OFFSET
1,8
FORMULA
a(n) = denominator((prime(n + 3) - prime(n + 2))/(prime(n + 1) - prime(n))).
A000040(n+3) = 5 + Sum_{k=1..n} ((1+(-1)^k)*Product_{j=1..k}(A286634(j)/a(j))^((1+(-1)^j)/2) + ((1-(-1)^k)/2)*Product_{j=1..k}(A286634(j)/a(j))^((1-(-1)^j)/2)), for n>0.
A001223(n+2) = (1+(-1)^n)*Product_{j=1..n}(A286634(j)/a(j))^((1+(-1)^j)/2) - ((-1+(-1)^n)/2)*Product_{j=1..n}(A286634(j)/a(j))^((1-(-1)^j)/2), for n>0.
MATHEMATICA
Table[Denominator[(Prime[k+3]-Prime[k+2])/(Prime[k+1]-Prime[k])], {k, 100}]
CROSSREFS
Cf. A286634 (numerators), A001223, A000040, A274225, A276309.
Sequence in context: A214123 A369188 A007862 * A055169 A205131 A175892
KEYWORD
nonn,frac
AUTHOR
Andres Cicuttin, Apr 27 2017
STATUS
approved