login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285854
Number of permutations of [n] with three ordered cycles such that equal-sized cycles are ordered with increasing least elements.
3
1, 18, 105, 1005, 6762, 61572, 558548, 5807700, 62757288, 777291768, 9831740256, 139111566048, 2048834965824, 32758018496640, 545051532176640, 9812211976039680, 182219827628874240, 3627461543458659840, 74765368810365696000, 1632210845693218560000
OFFSET
3,2
LINKS
Wikipedia, Permutation
MAPLE
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 4)
end:
a:= n-> coeff(b(n$2, 0), x, 3):
seq(a(n), n=3..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 3];
Table[a[n], {n, 3, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
CROSSREFS
Column k=3 of A285849.
Cf. A285918.
Sequence in context: A197339 A304763 A322648 * A123277 A123595 A317461
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 27 2017
STATUS
approved