login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285855
Number of permutations of [n] with four ordered cycles such that equal-sized cycles are ordered with increasing least elements.
3
1, 40, 430, 6300, 62601, 706608, 8985560, 107911760, 1439518696, 20364348576, 304923257184, 4772610024000, 80570363703696, 1409795519233536, 26263500315144192, 511153327733815296, 10464902116976779776, 223154458395064842240, 5010190272214829475840
OFFSET
4,2
LINKS
Wikipedia, Permutation
MAPLE
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 5)
end:
a:= n-> coeff(b(n$2, 0), x, 4):
seq(a(n), n=4..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 4];
Table[a[n], {n, 4, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
CROSSREFS
Column k=4 of A285849.
Cf. A285919.
Sequence in context: A007772 A228122 A247408 * A210355 A210348 A055750
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 27 2017
STATUS
approved