login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210348
1/4 of the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having one, two or three distinct clockwise edge differences.
1
40, 431, 4615, 49484, 530580, 5689274, 61005068, 654148428, 7014344012, 75213872216, 806508362752, 8648082333016, 92732242176864, 994355562040080, 10662343125623728, 114330894613824704, 1225955056113872768
OFFSET
1,1
COMMENTS
Column 1 of A210355.
LINKS
FORMULA
Empirical: a(n) = 14*a(n-1) - 30*a(n-2) - 66*a(n-3) + 104*a(n-4) + 136*a(n-5).
Empirical g.f.: x*(5 - 18*x)*(8 + 3*x - 33*x^2 - 30*x^3) / (1 - 14*x + 30*x^2 + 66*x^3 - 104*x^4 - 136*x^5). - Colin Barker, Jul 15 2018
EXAMPLE
Some solutions for n=4:
..0..1....3..0....0..3....0..2....3..3....2..1....2..0....2..2....1..3....0..1
..1..2....0..3....3..0....0..0....3..2....0..0....1..3....0..2....3..3....0..0
..0..2....1..2....1..2....1..1....0..1....3..0....1..3....3..1....1..1....1..1
..2..2....2..1....0..3....2..0....2..1....0..3....1..1....0..2....1..3....3..3
..0..0....1..0....2..1....2..0....1..0....1..2....3..2....2..0....2..3....0..3
CROSSREFS
Cf. A210355.
Sequence in context: A247408 A285855 A210355 * A055750 A290611 A115189
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 20 2012
STATUS
approved