login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1/4 of the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having one, two or three distinct clockwise edge differences.
1

%I #10 Jul 15 2018 12:02:51

%S 40,431,4615,49484,530580,5689274,61005068,654148428,7014344012,

%T 75213872216,806508362752,8648082333016,92732242176864,

%U 994355562040080,10662343125623728,114330894613824704,1225955056113872768

%N 1/4 of the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having one, two or three distinct clockwise edge differences.

%C Column 1 of A210355.

%H R. H. Hardin, <a href="/A210348/b210348.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 14*a(n-1) - 30*a(n-2) - 66*a(n-3) + 104*a(n-4) + 136*a(n-5).

%F Empirical g.f.: x*(5 - 18*x)*(8 + 3*x - 33*x^2 - 30*x^3) / (1 - 14*x + 30*x^2 + 66*x^3 - 104*x^4 - 136*x^5). - _Colin Barker_, Jul 15 2018

%e Some solutions for n=4:

%e ..0..1....3..0....0..3....0..2....3..3....2..1....2..0....2..2....1..3....0..1

%e ..1..2....0..3....3..0....0..0....3..2....0..0....1..3....0..2....3..3....0..0

%e ..0..2....1..2....1..2....1..1....0..1....3..0....1..3....3..1....1..1....1..1

%e ..2..2....2..1....0..3....2..0....2..1....0..3....1..1....0..2....1..3....3..3

%e ..0..0....1..0....2..1....2..0....1..0....1..2....3..2....2..0....2..3....0..3

%Y Cf. A210355.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 20 2012