OFFSET
0,8
COMMENTS
Each cycle is written with the smallest element first and equal-sized cycles are arranged in increasing order of their first elements.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Permutation
EXAMPLE
T(3,1) = 2: (123), (132).
T(3,2) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).
T(3,3) = 1: (1)(2)(3).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 6, 1;
0, 6, 19, 18, 1;
0, 24, 100, 105, 40, 1;
0, 120, 508, 1005, 430, 75, 1;
0, 720, 3528, 6762, 6300, 1400, 126, 1;
0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1;
MAPLE
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 27 2017
STATUS
approved