|
|
A285860
|
|
Number of permutations of [n] with nine ordered cycles such that equal-sized cycles are ordered with increasing least elements.
|
|
3
|
|
|
1, 405, 38610, 2331450, 121706442, 4694535846, 169670838480, 6075923190480, 198663468670953, 6325532235438273, 199912192325692002, 6415747810037718750, 203472294646893246264, 6508361104406113912344, 208391821362083355586128, 6837034161112760255699664
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
9,2
|
|
LINKS
|
|
|
MAPLE
|
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 10)
end:
a:= n-> coeff(b(n$2, 0), x, 9):
seq(a(n), n=9..25);
|
|
MATHEMATICA
|
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 10}];
a[n_] := Coefficient[b[n, n, 0], x, 9];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|