login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285863
Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).
4
1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
OFFSET
0,2
COMMENTS
The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.
FORMULA
a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).
MAPLE
seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
MATHEMATICA
Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
PROG
(Python)
from sympy import bernoulli
def a(n): return (3**n * bernoulli(n)).numerator()
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
(PARI) a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
CROSSREFS
KEYWORD
sign,easy,frac
AUTHOR
Wolfdieter Lang, Apr 29 2017
STATUS
approved